相關(guān)習(xí)題
 0  261202  261210  261216  261220  261226  261228  261232  261238  261240  261246  261252  261256  261258  261262  261268  261270  261276  261280  261282  261286  261288  261292  261294  261296  261297  261298  261300  261301  261302  261304  261306  261310  261312  261316  261318  261322  261328  261330  261336  261340  261342  261346  261352  261358  261360  261366  261370  261372  261378  261382  261388  261396  266669 

科目: 來源: 題型:

【題目】函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間及極值;

(2)若,是函數(shù)的兩個不同零點,求證:①;②.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知復(fù)數(shù),是實數(shù),是虛數(shù)單位.

(1)求復(fù)數(shù);

(2)若復(fù)數(shù)所表示的點在第一象限,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(管道構(gòu)成Rt△FHE,H是直角項點)來處理污水.管道越長,污水凈化效果越好.設(shè)計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=

(1)試將污水凈化管道的長度L表示為的函數(shù),并寫出定義域;

(2)當(dāng)取何值時,污水凈化效果最好?并求出此時管道的長度L.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的兩個焦點與短軸的一個頂點構(gòu)成底邊為,頂角為的等腰三角形.

(1)求橢圓的方程;

(2)設(shè)、、是橢圓上三動點,且,線段的中點為,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】己知函數(shù)是減函數(shù),則實數(shù)( )

A.2B.1C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知三棱柱,平面平面,,分別是的中點.

(1)證明:

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】給出下列四種說法:

1)函數(shù)與函數(shù)的定義域相同;

2)函數(shù)的值域相同;

3)若函數(shù)式定義在R上的偶函數(shù)且在為減函數(shù)對于銳角

4)若函數(shù),;

其中正確說法的序號是________.

查看答案和解析>>

科目: 來源: 題型:

【題目】某測試團隊為了研究“飲酒”對“駕車安全”的影響,隨機選取名駕駛員先后在無酒狀態(tài)、酒后狀態(tài)下進行“停車距離”測試.測試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車距離”(駕駛員從看到意外情況到車子完全停下所需要的距離).無酒狀態(tài)與酒后狀態(tài)下的試驗數(shù)據(jù)分別列于表1和表2.

表1

停車距離(米)

頻數(shù)

24

42

24

9

1

表2

平均每毫升血液酒精含量毫克

10

30

50

70

90

平均停車距離

30

50

60

70

90

回答以下問題.

(1)由表1估計駕駛員無酒狀態(tài)下停車距離的平均數(shù);

(2)根據(jù)最小二乘法,由表2的數(shù)據(jù)計算關(guān)于的回歸方程;

(3)該測試團隊認為:駕駛員酒后駕車的平均“停車距離”大于(1)中無酒狀態(tài)下的停車距離平均數(shù)的倍,則認定駕駛員是“醉駕”.請根據(jù)(2)中的回歸方程,預(yù)測當(dāng)每毫升血液酒精含量大于多少毫克時為“醉駕”?(精確到個位)

(附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

科目: 來源: 題型:

【題目】定義在上的函數(shù),若已知其在內(nèi)只取到一個最大值和一個最小值,且當(dāng)時函數(shù)取得最大值為;當(dāng),函數(shù)取得最小值為

1)求出此函數(shù)的解析式;

2)若將函數(shù)的圖像保持橫坐標(biāo)不變縱坐標(biāo)變?yōu)樵瓉淼?/span>得到函數(shù),再將函數(shù)的圖像向左平移個單位得到函數(shù),已知函數(shù)的最大值為,求滿足條件的的最小值;

3)是否存在實數(shù),滿足不等式?若存在,求出的范圍(或值),若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿市場銷售價與上市時間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時間的關(guān)系用圖(2)的拋物線段表示.

1)寫出圖(1)表示的市場售價與時間的函數(shù)關(guān)系式;寫出圖(2)表示的種植成本與時間的函數(shù)關(guān)系式;

2)認定市場售價減去種植成本為純收益,問何時上市的西紅柿收益最大?(注:市場售價和種植成本的單位:元/kg,時間單位:天.

查看答案和解析>>

同步練習(xí)冊答案