科目: 來源: 題型:
【題目】已知函數(shù),其中.
(1)若函數(shù)在處取得極值,求實(shí)數(shù)的值;
(2)在(1)的結(jié)論下,若關(guān)于的不等式,當(dāng)時(shí)恒成立,求的值;
(3)令,若關(guān)于的方程在內(nèi)至少有兩個(gè)解,求出實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目: 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了月日至月日的每天晝夜溫差與實(shí)驗(yàn)室每天每顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 月日 | 月日 | 月日 | 月日 | 月日 |
溫差 | |||||
發(fā)芽數(shù)(顆) |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再對被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的組數(shù)據(jù)恰好是不相鄰天數(shù)據(jù)的概率;
(2)若選取的是月日與月日的兩組數(shù)據(jù),請根據(jù)月日至月日的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了人進(jìn)行分析,得到如下列聯(lián)表(單位:人).
經(jīng)常使用 | 偶爾使用或不使用 | 合計(jì) | |
歲及以下 | |||
歲以上 | |||
合計(jì) |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認(rèn)為市使用共享單車的情況與年齡有關(guān);
(2)(i)現(xiàn)從所選取的歲以上的網(wǎng)友中,采用分層抽樣的方法選取人,再從這人中隨機(jī)選出人贈送優(yōu)惠券,求選出的人中至少有人經(jīng)常使用共享單車的概率;
(ii)將頻率視為概率,從市所有參與調(diào)查的網(wǎng)友中隨機(jī)選取人贈送禮品,記其中經(jīng)常使用共享單車的人數(shù)為,求的數(shù)學(xué)期望和方差.
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目: 來源: 題型:
【題目】在多面體中,底面是梯形,四邊形是正方形,,,面面,..
(1)求證:平面平面;
(2)設(shè)為線段上一點(diǎn),,試問在線段上是否存在一點(diǎn),使得平面,若存在,試指出點(diǎn)的位置;若不存在,說明理由?
(3)在(2)的條件下,求點(diǎn)到平面的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】某縣共有90間農(nóng)村淘寶服務(wù)站,隨機(jī)抽取5間,統(tǒng)計(jì)元旦期間的網(wǎng)購金額(單位:萬元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).
(1)根據(jù)莖葉圖計(jì)算樣本均值;
(2)若網(wǎng)購金額(單位:萬元)不小于18的服務(wù)站定義為優(yōu)秀服務(wù)站,其余為非優(yōu)秀服務(wù)站.根據(jù)莖葉圖推斷90間服務(wù)站中有幾間優(yōu)秀服務(wù)站?
(3)從隨機(jī)抽取的5間服務(wù)站中再任取2間作網(wǎng)購商品的調(diào)查,求恰有1間是優(yōu)秀服務(wù)站的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線的右頂點(diǎn)到其一條漸近線的距離等于,拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則拋物線上的動點(diǎn)到直線和距離之和的最小值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】對于函數(shù),如果存在實(shí)數(shù)使得,那么稱為的生成函數(shù).
(1)函數(shù),是否為的生成函數(shù)?說明理由;
(2)設(shè),,當(dāng)時(shí)生成函數(shù),求的對稱中心(不必證明);
(3)設(shè),,取,,生成函數(shù),若函數(shù)的最小值是5,求實(shí)數(shù)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長度單位,已知直線的參數(shù)方程為(為參數(shù),),曲線的極坐標(biāo)方程為.
(1)若,求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線相交于,兩點(diǎn),當(dāng)變化時(shí),求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)寫出曲線C的極坐標(biāo)方程;
(2)設(shè)點(diǎn)M的極坐標(biāo)為,過點(diǎn)M的直線與曲線C交于A、B兩點(diǎn),若,求.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0,則稱x0是f(x)的一個(gè)不動點(diǎn),已知f(x)=x2+ax+4在[1,3]恒有兩個(gè)不同的不動點(diǎn),則實(shí)數(shù)a的取值范圍______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com