相關(guān)習(xí)題
 0  261357  261365  261371  261375  261381  261383  261387  261393  261395  261401  261407  261411  261413  261417  261423  261425  261431  261435  261437  261441  261443  261447  261449  261451  261452  261453  261455  261456  261457  261459  261461  261465  261467  261471  261473  261477  261483  261485  261491  261495  261497  261501  261507  261513  261515  261521  261525  261527  261533  261537  261543  261551  266669 

科目: 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為(-2,2),函數(shù)g(x)=f(x-1)+f(3-2x).

(1)求函數(shù)g(x)的定義域;

(2)f(x)是奇函數(shù)且在定義域上單調(diào)遞減,求不等式g(x)0的解集

查看答案和解析>>

科目: 來源: 題型:

【題目】高中生在被問及“家,朋友聚集的地方,個人空間”三個場所中“感到最幸福的場所在哪里?”這個問題時,從洛陽的高中生中,隨機抽取了55人,從上海的高中生中隨機抽取了45人進行答題.洛陽高中生答題情況是選擇家的占、選擇朋友聚集的地方的占、選擇個人空間的占.上海高中生答題情況是:選擇朋友聚集的地方的占、選擇家的占、選擇個人空間的占.

(1)請根據(jù)以上調(diào)查結(jié)果將下面列聯(lián)表補充完整,并判斷能否有的把握認為“戀家在家里感到最幸福”與城市有關(guān)

在家里最幸福

在其它場所最幸福

合計

洛陽高中生

上海高中生

合計

(2) 從被調(diào)查的不“戀家”的上海學(xué)生中,用分層抽樣的方法選出4人接受進一步調(diào)查從被選出的4 人中隨機抽取2人到洛陽交流學(xué)習(xí),求這2人中含有在“個人空間”感到幸福的學(xué)生的概率.

,其中d.

查看答案和解析>>

科目: 來源: 題型:

【題目】鐵人中學(xué)高二學(xué)年某學(xué)生對其親屬30人飲食習(xí)慣進行了一次調(diào)查,并用如圖所示的莖葉圖表示30人的飲食指數(shù).(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主.)

(Ⅰ)根據(jù)莖葉圖,幫助這位學(xué)生說明其親屬30人的飲食習(xí)慣;

(Ⅱ)根據(jù)以上數(shù)據(jù)完成下列的列聯(lián)表:

主食蔬菜

主食肉類

合計

50歲以下人數(shù)

50歲以上人數(shù)

合計人數(shù)

(Ⅲ)能否在犯錯誤的概率不超過0.01的前提下認為其親屬的飲食習(xí)慣與年齡有關(guān)系?

附:.

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數(shù)方程為t為參數(shù)),曲線C的極坐標方程為ρ=4sinθ+).

(1)求直線l的普通方程與曲線C的直角坐標方程;

(2)若直線l與曲線C交于M,N兩點,求△MON的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】(本小題滿分12分)已知橢圓的離心率為,橢圓的短軸端點與雙曲線的焦點重合,過點且不垂直于軸的直線與橢圓相交于兩點.

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,曲邊三角形中,線段是直線的一部分,曲線段是拋物線的一部分.矩形的頂點分別在線段,曲線段軸上.設(shè)點,記矩形的面積為.

(Ⅰ)求函數(shù)的解析式并指明定義域;

(Ⅱ)求函數(shù)的最大值.

【答案】(Ⅰ) 定義域為;(Ⅱ) 在時,取得最大值.

【解析】試題分析:( I )根據(jù)點在直線,在拋物線,結(jié)合圖形,可得點從而可得函數(shù)的解析式,聯(lián)立直線與拋物線的方程即可求得定義域;(II)對函數(shù)求導(dǎo),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而可求得函數(shù)的最大值.

試題解析:( I )

解得 (舍)

因為點

所以 ,

其定義域為

(II)因為

,得,(舍)

所以的變化情況如下表

0

極大

因為是函數(shù)上的唯一的一個極大值,

所以在時,函數(shù)取得最大值.

點睛:利用導(dǎo)數(shù)解答函數(shù)最值的一般步驟:第一步:利用求單調(diào)區(qū)間;第二步:解得兩個根;第三步:比較兩根同區(qū)間端點的大小;第四步:求極值;第五步:比較極值同端點值的大。

型】解答
結(jié)束】
16

【題目】在各項均為正數(shù)的數(shù)列中, .

(Ⅰ)當(dāng)時,求的值;

(Ⅱ)求證:當(dāng)時,.

查看答案和解析>>

科目: 來源: 題型:

【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表1

年份x

2011

2012

2013

2014

2015

儲蓄存款y(千億元)

5

6

7

8

10

為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理, 得到下表2

時間代號t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z關(guān)于t的線性回歸方程;

(Ⅱ)用所求回歸方程預(yù)測到2020年年底,該地儲蓄存款額可達多少?

(附:對于線性回歸方程,其中

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線的焦點為為拋物線上異于原點的任意一點,過點的直線交拋物線于另一點軸的正半軸于點,且有.當(dāng)點的橫坐標為3為正三角形.

(1)求拋物線的方程;

(2)若直線,和拋物線有且只有一個公共點,試問直線是否過定點若過定點,求出定點坐標若不過定點,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù).

(1)已知函數(shù),求的極值;

(2)已知函數(shù),若存在實數(shù),使得當(dāng)時,函數(shù)的最大值為,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),其中.

(1)函數(shù)的圖象能否與軸相切?若能,求出實數(shù),若不能請說明理由;

(2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案