科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣x2+x,a∈R.
(Ⅰ)當a=1時,求f(x)在[﹣1,1]上的最大值和最小值;
(Ⅱ)若f(x)在區(qū)間[,2]上單調(diào)遞增,求a的取值范圍;
(Ⅲ)當m<0時,試判斷函數(shù)g(x)=-其中f′(x)是f(x)的導函數(shù))是否存在零點,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知多面體ABC﹣A1B1C1中,AA1,BB1,CC1均垂直于平面ABC,AB⊥AC,AA1=4,CC1=1,AB=AC=BB1=2.
(Ⅰ)求證:A1C⊥平面ABC1;
(Ⅱ)求二面角B﹣A1B1﹣C1的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知f(x)是定義在R上的函數(shù),f′(x)是f(x)的導函數(shù),且滿足f′(x)+f(x)<0,設(shè)g(x)=exf(x),若不等式g(1+t2)<g(mt)對于任意的實數(shù)t恒成立,則實數(shù)m的取值范圍是( )
A. (﹣∞,0)∪(4,+∞) B. (0,1)
C. (﹣∞,﹣2)∪(2,+∞) D. (﹣2,2)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,過右焦點F的直線l與C相交于A、B兩點,當l的斜率為1時,坐標原點O到l的距離為2。
(1)求橢圓C的方程;
(2)橢圓C上是否存在一點P,使得當l繞F轉(zhuǎn)到某一位置時,有成立?若存在,求點P的坐標與直線l的方程;若不存在,說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù) 有極值,且函數(shù)的極值點是的極值點,其中是自然對數(shù)的底數(shù).(極值點是指函數(shù)取得極值時對應(yīng)的自變量的值)
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)當時,若函數(shù)的最小值為,證明: .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知不等式。
(1) 若對于所有的實數(shù)x不等式恒成立,求m的取值范圍;
(2) 設(shè)不等式對于滿足的一切m的值都成立,求x的取值范圍。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某小區(qū)中央廣場由兩部分組成,一部分是邊長為的正方形,另一部分是以為直徑的半圓,其圓心為.規(guī)劃修建的條直道, , 將廣場分割為個區(qū)域:Ⅰ、Ⅲ、Ⅴ為綠化區(qū)域(圖中陰影部分),Ⅱ、Ⅳ、Ⅵ為休閑區(qū)域,其中點在半圓弧上, 分別與, 相交于點, .(道路寬度忽略不計)
(1)若經(jīng)過圓心,求點到的距離;
(2)設(shè), .
①試用表示的長度;
②當為何值時,綠化區(qū)域面積之和最大.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓 的離心率為,兩條準線之間的距離為.
(1)求橢圓的標準方程;
(2)已知橢圓的左頂點為,點在圓上,直線與橢圓相交于另一點,且的面積是的面積的倍,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程是 (為參數(shù)),以原點為極點, 軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.
(Ⅰ)求曲線的普通方程與直線的直角坐標方程;
(Ⅱ)已知直線與曲線交于, 兩點,與軸交于點,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com