相關習題
 0  261696  261704  261710  261714  261720  261722  261726  261732  261734  261740  261746  261750  261752  261756  261762  261764  261770  261774  261776  261780  261782  261786  261788  261790  261791  261792  261794  261795  261796  261798  261800  261804  261806  261810  261812  261816  261822  261824  261830  261834  261836  261840  261846  261852  261854  261860  261864  261866  261872  261876  261882  261890  266669 

科目: 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,且橢圓過點,離心率;點在橢圓上,延長與橢圓交于點,點中點.

(1)求橢圓C的方程;

(2)若是坐標原點,記的面積之和為,求的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】上饒某購物中心在開業(yè)之后,為了解消費者購物金額的分布,在當月的電腦消費小票中隨機抽取張進行統(tǒng)計,將結果分成5組,分別是,制成如圖所示的頻率分布直方圖(假設消費金額均在元的區(qū)間內(nèi)).

1)若在消費金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票均來自元區(qū)間的概率;

2)為做好五一勞動節(jié)期間的商場促銷活動,策劃人員設計了兩種不同的促銷方案:

方案一:全場商品打8.5折;

方案二:全場購物滿200元減20元,滿400元減50元,滿600元減80元,滿800元減120元,以上減免只取最高優(yōu)惠,不重復減免.利用直方圖的信息分析哪種方案優(yōu)惠力度更大,并說明理由(直方圖中每個小組取中間值作為該組數(shù)據(jù)的替代值).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知是同一平面內(nèi)的三個向量,下列命題中正確的是(

A.

B.,則

C.兩個非零向量,,若,則共線且反向

D.已知,,且的夾角為銳角,則實數(shù)的取值范圍是

查看答案和解析>>

科目: 來源: 題型:

【題目】某地區(qū)積極發(fā)展電商,通過近些年工作的開展在新農(nóng)村建設和扶貧過程中起到了非常重要的作用,促進了農(nóng)民生活富裕,為了更好地了解本地區(qū)某一特色產(chǎn)品的宣傳費 (千元)對銷量 (千件)的影響,統(tǒng)計了近六年的數(shù)據(jù)如下:

(1)若近6年的宣傳費與銷量呈線性分布,由前5年數(shù)據(jù)求線性回歸直線方程,并寫出的預測值;

(2)若利潤與宣傳費的比值不低于20的年份稱為“吉祥年”,在這6個年份中任意選2個年份,求這2個年份均為“吉祥年”的概率

附:回歸方程的斜率與截距的最小二乘法估計分別為,

,其中, , 的平均數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,在四個正方體中,是正方體的一條體對角線,點分別為其所在棱的中點,能得出平面的圖形為(

A.B.

C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,已知曲線 為參數(shù)),在以原點為極點, 軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為

(1)求曲線的普通方程和直線的直角坐標方程;

(2)過點且與直線平行的直線, 兩點,求點, 兩點的距離之積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線為,若時,有極值.

1)求的值;

2)求上的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,曲線由上半橢圓 , )和部分拋物線 )連接而成, 的公共點為, ,其中的離心率為

(1)求, 的值;

(2)過點的直線 分別交于點, (均異于點 ),是否存在直線,使得以為直徑的圓恰好過點,若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知曲線,則下列結論正確的是 ( )

A. 向左平移個單位長度,得到的曲線關于原點對稱

B. 向右平移個單位長度,得到的曲線關于軸對稱

C. 向左平移個單位長度,得到的曲線關于原點對稱

D. 向右平移個單位長度,得到的曲線關于軸對稱

查看答案和解析>>

科目: 來源: 題型:

【題目】是圓上的任意一點,是過點且與軸垂直的直線,是直線軸的交點,點在直線上,且滿足當點在圓上運動時,記點的軌跡為曲線

求曲線的方程;

已知直線與曲線交于兩點,點關于軸的對稱點為,設,證明:直線過定點,并求面積的最大值.

查看答案和解析>>

同步練習冊答案