科目: 來源: 題型:
【題目】已知某海濱浴場海浪的高度(米是時刻,單位:時)的函數(shù),記作:,下表是某日各時刻的浪高數(shù)據(jù):
時 | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
米 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 |
經(jīng)長期觀測,的曲線可近似地看成是函數(shù),,的圖象.
(
(2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時才對沖浪愛好者開放,請依據(jù)(1)的結(jié)論,判斷一天內(nèi)的至之間,那個時間段不對沖浪愛好者開放?
查看答案和解析>>
科目: 來源: 題型:
【題目】下列結(jié)論:
①若,則“”成立的一個充分不必要條件是“,且”;
②存在,使得;
③若函數(shù)的導(dǎo)函數(shù)是奇函數(shù),則實數(shù);
④平面上的動點到定點的距離比到軸的距離大1的點的軌跡方程為.
其中正確結(jié)論的序號為_________.(填寫所有正確的結(jié)論序號)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}的首項, , .
(1)求證:數(shù)列為等比數(shù)列;
(2)記,若Sn<100,求最大正整數(shù)n;
(3)是否存在互不相等的正整數(shù)m,s,n,使m,s,n成等差數(shù)列,且am-1,as-1,an-1成等比數(shù)列?如果存在,請給以證明;如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于若數(shù)列滿足則稱這個數(shù)列為“數(shù)列”.
(Ⅰ)已知數(shù)列1, 是“數(shù)列”,求實數(shù)的取值范圍;
(Ⅱ)是否存在首項為的等差數(shù)列為“數(shù)列”,且其前項和使得恒成立?若存在,求出的通項公式;若不存在,請說明理由;
(Ⅲ)已知各項均為正整數(shù)的等比數(shù)列是“數(shù)列”,數(shù)列不是“數(shù)列”,若試判斷數(shù)列是否為“數(shù)列”,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】摩拜單車和小黃車等各種共享單車的普及給我們的生活帶來了便利.已知某共享單車的收費標(biāo)準(zhǔn)是:每車使用不超過1小時(包含1小時)是免費的,超過1小時的部分每小時收費1元(不足1小時的部分按1小時計算,例如:騎行2.5小時收費2元).現(xiàn)有甲、乙兩人各自使用該種共享單車一次.設(shè)甲、乙不超過1小時還車的概率分別為1小時以上且不超過2小時還車的概率分別為兩人用車時間都不會超過3小時.
(Ⅰ)求甲乙兩人所付的車費相同的概率;
(Ⅱ)設(shè)甲乙兩人所付的車費之和為隨機(jī)變量求的分布列及數(shù)學(xué)期望
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點,圓,點是圓上一動點, 的垂直平分線與交于點.
(1)求點的軌跡方程;
(2)設(shè)點的軌跡為曲線,過點且斜率不為0的直線與交于兩點,點關(guān)于軸的對稱點為,證明直線過定點,并求面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】一對夫婦為了給他們的獨生孩子支付將來上大學(xué)的費用,從孩子一周歲生日開始,每年到銀行儲蓄元一年定期,若年利率為保持不變,且每年到期時存款(含利息)自動轉(zhuǎn)為新的一年定期,當(dāng)孩子18歲生日時不再存入,將所有存款(含利息)全部取回,則取回的錢的總數(shù)為
A.B.
C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線C:,點在x軸的正半軸上,過點M的直線l與拋線C相交于A、B兩點,O為坐標(biāo)原點.
若,且直線l的斜率為1,求證:以AB為直徑的圓與拋物線C的準(zhǔn)線相切;
是否存在定點M,使得不論直線l繞點M如何轉(zhuǎn)動,恒為定值?若存在,請求出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某客運公司用、兩種型號的車輛承擔(dān)甲、乙兩地的長途客運業(yè)務(wù),每車每天往返一次.、兩種型號的車輛的載客量分別是32人和48人,從甲地到乙地的營運成本依次為1500元/輛和2000元/輛.公司擬組建一個不超過21輛車的車隊,并要求種型號的車不多于種型號的車5輛.若每天從甲地運送到乙地的旅客不少于800人,為使公司從甲地到乙地的營運成本最小,應(yīng)配備、兩種型號的車各多少輛?并求出最小營運成本.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com