相關習題
 0  261737  261745  261751  261755  261761  261763  261767  261773  261775  261781  261787  261791  261793  261797  261803  261805  261811  261815  261817  261821  261823  261827  261829  261831  261832  261833  261835  261836  261837  261839  261841  261845  261847  261851  261853  261857  261863  261865  261871  261875  261877  261881  261887  261893  261895  261901  261905  261907  261913  261917  261923  261931  266669 

科目: 來源: 題型:

【題目】某單位決定投資元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每長造價元,兩側墻砌磚,每長造價元,

1)求該倉庫面積的最大值;

2)若為了使倉庫防雨,需要為倉庫做屋頂.頂部每造價元,求倉庫面積的最大值,并求出此時正面鐵柵應設計為多長?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知ABC的頂點C在直線3x﹣y=0上,頂點A、B的坐標分別為(4,2),(0,5).

)求過點A且在x,y軸上的截距相等的直線方程;

)若ABC的面積為10,求頂點C的坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖為一個正方體與一個半球構成的組合體,半球的底面圓與該正方體的上底面的四邊相切, 與正方形的中心重合.將此組合體重新置于一個球中(球未畫出),使該正方體的下底面的頂點均落在球的表面上,半球與球內切,設切點為,若正四棱錐的表面積為,則球的表面積為( )

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點、為雙曲線的左、右焦點,過作垂直于軸的直線,在軸上方交雙曲線于點,且

(1)求雙曲線的兩條漸近線的夾角;

(2)過點的直線和雙曲線的右支交于兩點,求的面積的最小值;

(3)過雙曲線上任意一點分別作該雙曲線兩條漸近線的平行線,它們分別交兩條漸近線于兩點,求平行四邊形的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線Cρsin2θ2acos θ(a>0),過點P(2,-4)的直線l (t為參數(shù))與曲線C相交于M,N兩點.

(1)求曲線C的直角坐標方程和直線l的普通方程;

(2)|PM|,|MN|,|PN|成等比數(shù)列,求實數(shù)a的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】a >0,已知函數(shù) (x>0)

()討論函數(shù)的單調性

()試判斷函數(shù)上是否有兩個零點,并說明理由

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,短軸的兩個端點分別為、,且為等邊三角形.

(1)若橢圓長軸的長為4,求橢圓的方程;

(2)如果在橢圓上存在不同的兩點關于直線對稱,求實數(shù)的取值范圍;

(3)已知點,橢圓上兩點滿足,求點橫坐標的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在正方體ABCD-A1B1C1D1的棱長為2,點P是上底面A1B1C1D1內一動點,則三棱錐P-ABC的三視圖的面積之和最大值為( )

A.6B.7C.8D.9

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的離心率,兩焦點分別為,右頂點為 .

(Ⅰ)求橢圓的標準方程;

(Ⅱ)設過定點的直線與雙曲線的左支有兩個交點,與橢圓交于兩點,與圓交于兩點,若的面積為 ,求正數(shù)的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】輪船在海上航行時,需要借助無線電導航確認自己所在的位置,以把握航向.現(xiàn)有、、三個無線電發(fā)射臺,其中在陸地上,在海上,在某國海岸線上,(該國這段海岸線可以近似地看作直線的一部分),如下圖.已知、兩點距離10千米,的中點,海岸線與直線的夾角為.為保證安全,輪船的航路始終要滿足:接收到點的信號比接收到點的信號晚秒.(注:無線電信號每秒傳播千米).在某時刻,測得輪船距離點距離為4千米.

(1)以點為原點,直線軸建立平面直角坐標系(如圖),求出該時刻輪船的位置;

(2)根據(jù)經驗,船只在距離海岸線1.5千米以內的海域航行時,有擱淺的風險.如果輪船保持目前的航路不變,那么是否有擱淺風險?

查看答案和解析>>

同步練習冊答案