科目: 來源: 題型:
【題目】如圖,在三棱錐D-ABC中,底面ABC,為正三角形,若,,則三棱錐D-ABC與三棱錐E-ABC的公共部分構(gòu)成的幾何體的外接球的體積為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】某單位計劃建造一間背面靠墻的小屋,其地面面積為12m2,墻面的高度為3m,經(jīng)測算,屋頂?shù)脑靸r為5800元,房屋正面每平方米的造價為1200元,房屋側(cè)面每平方米的造價為800元,設(shè)房屋正面地面長方形的邊長為m,房屋背面和地面的費用不計.
(1)用含的表達式表示出房屋的總造價;
(2)當為多少時,總造價最低?最低造價是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標準,其合格產(chǎn)品的質(zhì)量與尺寸之間近似滿足關(guān)系式(為大于0的常數(shù)).現(xiàn)隨機抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:
對數(shù)據(jù)作了初步處理,相關(guān)統(tǒng)計位的值如下表:
(1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;
(2)按照某項指標測定,當產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時為優(yōu)等品.現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記為取到優(yōu)等品的件數(shù),試求隨機變量的分布列和期望.
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點.
(1)若一條直線經(jīng)過點,且原點到直線的距離為,求該直線的一般式方程;
(2)求過點且與原點距離最大的直線的一般式方程,并求出最大距離是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線上的點與定點的距離與它到直線的距離的比是常數(shù),又斜率為的直線與曲線交于不同的兩點。
(Ⅰ)求曲線的方程;
(Ⅱ)若,求 的最大值;
(Ⅲ)設(shè),直線與曲線的另一個交點為,直線與曲線的另一個交點為.若和點 共線,求的值。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點,,,.
(1)求證:平面平面;
(2)若為棱的中點,求異面直線與所成角的余弦值;
(3)若二面角大小為,求的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形所在平面與四邊形所在平面互相重直,是等腰直角三角形,,,.
(1)求證:平面;
(2)設(shè)線段、的中點分別為、,求與所成角的正弦值;
(3)求二面角的平面角的正切值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校為了解該校多媒體教學普及情況,根據(jù)年齡按分層抽樣的方式調(diào)查了該校50名教師,他們的年齡頻數(shù)及使用多媒體教學情況的人數(shù)分布如下表:
(1)由以上統(tǒng)計數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有的把握認為以40歲為分界點對是否經(jīng)常使用多媒體教學有差異?
附:,.
(2)若采用分層抽樣的方式從年齡低于40歲且經(jīng)常使用多媒體的教師中選出6人,再從這6人中隨機抽取2人,求這2人中至少有1人年齡在30-39歲的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com