相關(guān)習(xí)題
 0  261964  261972  261978  261982  261988  261990  261994  262000  262002  262008  262014  262018  262020  262024  262030  262032  262038  262042  262044  262048  262050  262054  262056  262058  262059  262060  262062  262063  262064  262066  262068  262072  262074  262078  262080  262084  262090  262092  262098  262102  262104  262108  262114  262120  262122  262128  262132  262134  262140  262144  262150  262158  266669 

科目: 來源: 題型:

【題目】關(guān)于函數(shù),下列說法錯誤的是

A. 的最小值點

B. 函數(shù)有且只有1個零點

C. 存在正實數(shù),使得恒成立

D. 對任意兩個不相等的正實數(shù),若,則

查看答案和解析>>

科目: 來源: 題型:

【題目】對于定義域為的函數(shù),若同時滿足下列三個條件:① 當(dāng),且時,都有 ; 當(dāng),且時,都有, 則稱偏對稱函數(shù).現(xiàn)給出下列三個函數(shù): ; ; 則其中是偏對稱函數(shù)的函數(shù)個數(shù)為

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】朱世杰是歷史上最未打的數(shù)學(xué)家之一,他所著的《四元玉鑒》卷中“如像招數(shù)一五間”,有如下問題:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉(zhuǎn)多七人,每人日支米三升,共支米四百三石九斗二升,問筑堤幾日?”.其大意為:“官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始,每天派出的人數(shù)比前一天多7人,修筑堤壩的每人每天發(fā)大米3升,共發(fā)出大米40392升,問修筑堤壩多少天”.在這個問題中,前5天應(yīng)發(fā)大米( )

A. 894升 B. 1170升 C. 1275升 D. 1457升

查看答案和解析>>

科目: 來源: 題型:

【題目】已知矩形的兩條對角線相交于點,邊所在直線的方程為.點邊所在直線上.求:

1邊所在直線的方程;

2邊所在直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)若函數(shù)有極小值,求該極小值的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知平面、平面、平面、直線以及直線,則下列命題說法錯誤的是( )

A.,則B.,則

C.,則D.,則

查看答案和解析>>

科目: 來源: 題型:

【題目】“既要金山銀山,又要綠水青山”。某風(fēng)景區(qū)在一個直徑米的半圓形花圓中設(shè)計一條觀光線路。打算在半圓弧上任選一點(與不重合),沿修一條直線段小路,在路的兩側(cè)(注意是兩側(cè))種植綠化帶;再沿弧修一條弧形小路,在小路的一側(cè)(注意是一側(cè))種植綠化帶,小路與綠化帶的寬度忽略不計。

(1)設(shè)(弧度),將綠化帶的總長度表示為的函數(shù);

(2)求綠化帶的總長度的最大值。

查看答案和解析>>

科目: 來源: 題型:

【題目】王老師的班上有四個體育健將甲、乙、丙、丁,他們都特別擅長短跑,在某次運動會上,他們四人要組成一個米接力隊,王老師要安排他們四個人的出場順序,以下是他們四人的對話:

甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;

丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒;

王老師聽了他們四人的對話,安排了一種合理的出場順序,滿足了他們的所有要求, 據(jù)此我們可以斷定,在王老師安排的出場順序中,跑第三棒的人是( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓,直線過定點.

1)點在圓上運動,求的最小值,并求出此時點的坐標(biāo).

2)若與圓C相交于兩點,線段的中點為,又的交點為,判斷是否為定值.若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求圓的直角坐標(biāo)方程,并寫出圓心和半徑;

(2)若直線與圓交于兩點,求的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案