科目: 來源: 題型:
【題目】為了解某品種一批樹苗生長情況,在該批樹苗中隨機(jī)抽取了容量為120的樣本,測量樹苗高度(單位:,經(jīng)統(tǒng)計,其高度均在區(qū)間,內(nèi),將其按,,,,,,,,,,,分成6組,制成如圖所示的頻率分布直方圖.其中高度為及以上的樹苗為優(yōu)質(zhì)樹苗.
(1)求圖中的值,并估計這批樹苗的平均高度(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)已知所抽取的這120棵樹苗來自于,兩個試驗區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表:
試驗區(qū) | 試驗區(qū) | 合計 | |
優(yōu)質(zhì)樹苗 | 20 | ||
非優(yōu)質(zhì)樹苗 | 60 | ||
合計 |
將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為優(yōu)質(zhì)樹苗與,兩個試驗區(qū)有關(guān)系,并說明理由.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù),.
(1)判斷函數(shù):在的單調(diào)性;
(2)對于區(qū)間上的任意不相等實數(shù)、,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程1表示焦點在x軸上的雙曲線.
(1)命題q為真命題,求實數(shù)k的取值范圍;
(2)若命題“p∨q”為真,命題“p∧q”為假,求實數(shù)k的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】(2018·江西六校聯(lián)考)在△ABC中,角A,B,C所對的邊分別為a,b,c,a=4,b=4,cosA=-.
(1)求角B的大。
(2)若f(x)=cos2x+sin2(x+B),求函數(shù)f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC為正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中點.求證:
(1)DE=DA;
(2)平面BDM⊥平面ECA;
(3)平面DEA⊥平面ECA.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4—5;不等式選講.
已知函數(shù).
(1)若的解集非空,求實數(shù)的取值范圍;
(2)若正數(shù)滿足, 為(1)中m可取到的最大值,求證: .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠ABC=∠BAD=90°,AD>BC.E,F分別為棱AB,PC上的點.
(1)求證:平面AFD⊥平面PAB;
(2)若點E滿足,當(dāng)F滿足什么條件時,EF∥平面PAD?請給出證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:過點,且橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)斜率為的直線交橢圓于,兩點,且.若直線上存在點P,使得是以為頂角的等腰直角三角形,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com