相關(guān)習題
 0  262931  262939  262945  262949  262955  262957  262961  262967  262969  262975  262981  262985  262987  262991  262997  262999  263005  263009  263011  263015  263017  263021  263023  263025  263026  263027  263029  263030  263031  263033  263035  263039  263041  263045  263047  263051  263057  263059  263065  263069  263071  263075  263081  263087  263089  263095  263099  263101  263107  263111  263117  263125  266669 

科目: 來源: 題型:

【題目】已知橢圓經(jīng)過點,離心率為.

1)求橢圓的方程;

2)過點作兩條互相垂直的弦分別與橢圓交于點,求點到直線距離的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知O為坐標原點,對于函數(shù),稱向量為函數(shù)的伴隨向量,同時稱函數(shù)為向量的伴隨函數(shù).

1)設(shè)函數(shù),試求的伴隨向量;

2)記向量的伴隨函數(shù)為,求當的值;

3)由(1)中函數(shù)的圖象(縱坐標不變)橫坐標伸長為原來的2倍,再把整個圖象向右平移個單位長度得到的圖象,已知,問在的圖象上是否存在一點P,使得.若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系中,圓的參數(shù)方程為為參數(shù)),圓與圓外切于原點,且兩圓圓心的距離,以坐標原點為極點,軸正半軸為極軸建立極坐標系.

(1)求圓和圓的極坐標方程;

(2)過點的直線與圓異于點的交點分別為點,,與圓異于點的交點分別為點,,且,求四邊形面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知四棱錐,底面為菱形, ,H為上的點,過的平面分別交于點,且平面

(1)證明: ;

(2)當的中點, 與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了提高學生的身體素質(zhì),某校高一、高二兩個年級共名學生同時參與了我運動,我健康,我快樂的跳繩、踢毽等系列體育健身活動.為了了解學生的運動狀況,采用分層抽樣的方法從高一、高二兩個年級的學生中分別抽取名和名學生進行測試.下表是高二年級的名學生的測試數(shù)據(jù)(單位:個/分鐘):

學生編號

1

2

3

4

5

跳繩個數(shù)

179

181

168

177

183

踢毽個數(shù)

85

78

79

72

80

1)求高一、高二兩個年級各有多少人?

2)設(shè)某學生跳繩/分鐘,踢毽/分鐘.,且時,稱該學生為運動達人”.

①從高二年級的學生中任選一人,試估計該學生為運動達人的概率;

②從高二年級抽出的上述名學生中,隨機抽取人,求抽取的名學生中為span>運動達人的人數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.

該公司將近天,每天攬件數(shù)量統(tǒng)計如下:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

(1)某人打算將, 三件禮物隨機分成兩個包裹寄出,求該人支付的快遞費不超過元的概率;

(2)該公司從收取的每件快遞的費用中抽取元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.前臺工作人員每人每天攬件不超過件,工資元,目前前臺有工作人員人,那么,公司將前臺工作人員裁員人對提高公司利潤是否更有利?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知雙曲線 的左、右焦點分別為, 為坐標原點, 是雙曲線上在第一象限內(nèi)的點,直線分別交雙曲線左、右支于另一點, ,且,則雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】 已知函數(shù)(a為常數(shù)).

(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓關(guān)于直線對稱的圓為.

(1)求圓的方程;

(2)過點作直線與圓交于兩點, 是坐標原點,是否存在這樣的直線,使得在平行四邊形?若存在,求出所有滿足條件的直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知自然數(shù)20個正整數(shù)因子(包括1和本身),它們從小到大依次記作,,,…,,且序號為的因數(shù)為.求自然數(shù)

查看答案和解析>>

同步練習冊答案