相關習題
 0  263313  263321  263327  263331  263337  263339  263343  263349  263351  263357  263363  263367  263369  263373  263379  263381  263387  263391  263393  263397  263399  263403  263405  263407  263408  263409  263411  263412  263413  263415  263417  263421  263423  263427  263429  263433  263439  263441  263447  263451  263453  263457  263463  263469  263471  263477  263481  263483  263489  263493  263499  263507  266669 

科目: 來源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)的單調(diào)性;

(2)當a=1時,若關于的不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某醫(yī)院為篩查某種疾病,需要檢驗血液是否為陽性,現(xiàn)有)份血液樣本,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗次;(2)混合檢驗,將其中)份血液樣本分別取樣混合在一起檢驗.若檢驗結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這份血液究竟哪幾份為陽性,就要對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為次.假設在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為

(1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經(jīng)過4次檢驗就能把陽性樣本全部檢驗出來的概率.

(2)現(xiàn)取其中)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為

(。┰囘\用概率統(tǒng)計的知識,若 ,試求關于的函數(shù)關系式

(ⅱ)若,采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求的最大值.

參考數(shù)據(jù):,,

查看答案和解析>>

科目: 來源: 題型:

【題目】某服裝公司,為確定明年類服裝的廣告費用,對往年廣告費(單位:千元)對年銷售量(單位:件)和年利潤(單位:千元)的影響.2011-2018廣告費和年銷售量數(shù)據(jù)進行了處理,分析出以下散點圖和統(tǒng)計量:


45

580

2025

297

1600

960

1440

表中

1)由散點圖可知,更適合作為年銷售量關于年廣告費的回歸方程類型?(給出判斷即可,不必說明理由)

2)根據(jù)(1)的判斷結(jié)果和表中數(shù)據(jù)求關于的回歸方程.

3)已知該類服裝年利率的關系為.由(2)回答以下問題:年廣告費用等于60時,年銷售量及年利潤的預報值為多少?年廣告費用為何值時,年利率的預報值最。

對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計分別為:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知,若函數(shù)4個零點,則實數(shù)k的取值范圍是______

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知四邊形是邊長為2的菱形,且,,,點是線段上的一點.為線段的中點.

(1)若,證明:平面;

(2)若,,求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線的焦點為,其準線與軸的交點為,過點作直線與拋物線交于兩點.若以為直徑的圓過點,則的值為________

查看答案和解析>>

科目: 來源: 題型:

【題目】關于函數(shù),下列判斷正確的是(

A.的極大值點

B.函數(shù)有且只有1個零點

C.存在正實數(shù),使得成立

D.對任意兩個正實數(shù),,且,若,則.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)a的取值范圍;

2)若,函數(shù)處取得極小值,證明:.

查看答案和解析>>

科目: 來源: 題型:

【題目】隨著食品安全問題逐漸引起人們的重視,有機、健康的高端綠色蔬菜越來越受到消費者的歡迎,同時生產(chǎn)—運輸—銷售一體化的直銷供應模式,不僅減少了成本,而且減去了蔬菜的二次污染等問題.

(1)在有機蔬菜的種植過程中,有機肥料使用是必不可少的.根據(jù)統(tǒng)計某種有機蔬菜的產(chǎn)量與有機肥料的用量有關系,每個有機蔬菜大棚產(chǎn)量的增加量(百斤)與使用堆漚肥料(千克)之間對應數(shù)據(jù)如下表

使用堆漚肥料(千克)

2

4

5

6

8

產(chǎn)量的增加量(百斤)

3

4

4

4

5

依據(jù)表中的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;并根據(jù)所求線性回歸方程,估計如果每個有機蔬菜大棚使用堆漚肥料10千克,則每個有機蔬菜大棚產(chǎn)量增加量是多少百斤?

(2)某大棚蔬菜種植基地將采摘的有機蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價格銷售到生鮮超市.“樂購”生鮮超市以每份15元的價格賣給顧客,如果當天前8小時賣不完,則超市通過促銷以每份5元的價格賣給顧客(根據(jù)經(jīng)驗,當天能夠把剩余的有機蔬菜都低價處理完畢,且處理完畢后,當天不再進貨).該生鮮超市統(tǒng)計了100天有機蔬菜在每天的前8小時內(nèi)的銷售量(單位:份),制成如下表格(注:,且);

前8小時內(nèi)的銷售量(單位:份)

15

16

17

18

19

20

21

頻數(shù)

10

x

16

6

15

13

y

若以100天記錄的頻率作為每日前8小時銷售量發(fā)生的概率,該生鮮超市當天銷售有機蔬菜利潤的期望值為決策依據(jù),當購進17份比購進18份的利潤的期望值大時,求的取值范圍.

附:回歸直線方程為,其中.

查看答案和解析>>

科目: 來源: 題型:

【題目】為實數(shù),.證明:

(1)把寫成無窮乘積有唯一的表達式其中,為正整數(shù),滿足;

(2)是有理數(shù),當且僅當它的無窮乘積具有下列性質(zhì):存在,對所有的,滿足

查看答案和解析>>

同步練習冊答案