科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為=(>0),過點(diǎn)的直線的參數(shù)方程為(t為參數(shù)),直線與曲線C相交于A,B兩點(diǎn).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),恒成立,求整數(shù)的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】現(xiàn)對某市工薪階層關(guān)于“樓市限購令”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們月收入的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如下表.
月收入(單位百元) | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有99%的把握認(rèn)為“月收入以5500元為分界點(diǎn)對“樓市限購令”的態(tài)度有差異;
月收入不低于55百元的人數(shù) | 月收入低于55百元的人數(shù) | 合計(jì) | |
贊成 | a=______________ | c=______________ | ______________ |
不贊成 | b=______________ | d=______________ | ______________ |
合計(jì) | ______________ | ______________ | ______________ |
(2)試求從年收入位于(單位:百元)的區(qū)間段的被調(diào)查者中隨機(jī)抽取2人,恰有1位是贊成者的概率。
參考公式:,其中.
參考值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩人參加某種選拔測試,在備選的10道題中,甲答對其中每道題的概率都是,乙能答對其中的5道題。規(guī)定每次考試都從備選的10道題中隨機(jī)抽出3道題進(jìn)行測試,答對一題加10分,答錯(cuò)一題(不答視為答錯(cuò))減5分,至少得15分才能入選.
(I)求甲能入選的概率.
(II)求乙得分的分布列和數(shù)學(xué)期望;
查看答案和解析>>
科目: 來源: 題型:
【題目】求正整數(shù)n的最大值,使得對任意一個(gè)以為頂點(diǎn)的n階簡單圖,總能找到集合的n個(gè)子集,滿足:當(dāng)且僅當(dāng)與相鄰.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的焦距與短軸長相等,長軸長為,設(shè)過右焦點(diǎn)F傾斜角為的直線交橢圓M于A、B兩點(diǎn).
(1)求橢圓M的方程;
(2)求證:
(3)設(shè)過右焦點(diǎn)F且與直線AB垂直的直線交橢圓M于C、D,求四邊形ABCD面積的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】若函數(shù)滿足:對任意實(shí)數(shù),方程的解的個(gè)數(shù)為偶數(shù)(可以是0個(gè),但不能是無數(shù)個(gè)),則稱為“偶的函數(shù)”.證明:
(1)任何多項(xiàng)式均不是偶的函數(shù);
(2)存在連續(xù)函數(shù)是偶的函數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,,E,F分別為AB,CD的中點(diǎn),,M為DF中點(diǎn).現(xiàn)將四邊形BEFC沿EF折起,使平面平面AEFD,得到如圖所示的多面體.在圖中,
(1)證明:;
(2)求二面角E-BC-M的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com