科目: 來源: 題型:
【題目】過去大多數(shù)人采用儲蓄的方式將錢儲蓄起來,以保證自己生活的穩(wěn)定,考慮到通貨膨脹的壓力,如果我們把所有的錢都用來儲蓄,這并不是一種很好的方式,隨著金融業(yè)的發(fā)展,普通人能夠使用的投資理財工具也多了起來,為了研究某種理財工具的使用情況,現(xiàn)對年齡段的人員進(jìn)行了調(diào)查研究,將各年齡段人數(shù)分成組:,并整理得到頻率分布直方圖:
(1)求圖中的值;
(2)采用分層抽樣的方法,從第二組、第三組、第四組中共抽取人,則三個組中各抽取多少人?
(3)在(2)中抽取的人中,隨機(jī)抽取人,則這人都來自于第三組的概率是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】在“數(shù)學(xué)發(fā)展史”知識測驗(yàn)后,甲、乙、丙三人對成績進(jìn)行預(yù)測:
甲說:我的成績比乙高;
乙說:丙的成績比我和甲的都高;
丙說:我的成績比乙高.
成績公布后,三人成績互不相同且只有一個人預(yù)測正確,那么三人中預(yù)測正確的是________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知.
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時,求證:對于,恒成立;
(3)若存在,使得當(dāng)時,恒有成立,試求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,離心率為,是橢圓上的一個動點(diǎn),且面積的最大值為.
(1)求橢圓的方程;
(2)設(shè)直線斜率為,且與橢圓的另一個交點(diǎn)為,是否存在點(diǎn),使得若存在,求的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的極值;
(2)設(shè)函數(shù)在處的切線方程為,若函數(shù)是上的單調(diào)增函數(shù),求的值;
(3)是否存在一條直線與函數(shù)的圖象相切于兩個不同的點(diǎn)?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在數(shù)列中,,且對任意,成等差數(shù)列,其公差為.
(1)若,求的值;
(2)若,證明成等比數(shù)列();
(3)若對任意,成等比數(shù)列,其公比為,設(shè),證明數(shù)列是等差數(shù)列.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知若,則稱為的原函數(shù),此時所有的原函數(shù)為,其中為常數(shù),如:,則(為常數(shù)).現(xiàn)已知函數(shù)的導(dǎo)函數(shù)為且對任意的實(shí)數(shù)都有(是自然對數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個整數(shù),則實(shí)數(shù)的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】教材曾有介紹:圓上的點(diǎn)處的切線方程為.我們將其結(jié)論推廣:橢圓()上的點(diǎn)處的切線方程為,在解本題時可以直接應(yīng)用.已知,直線與橢圓:()有且只有一個公共點(diǎn).
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),過橢圓上的兩點(diǎn)、分別作該橢圓的兩條切線、,且與交于點(diǎn).當(dāng)變化時,求面積的最大值;
(3)若是橢圓上不同的兩點(diǎn),軸,圓過且橢圓上任意一點(diǎn)都不在圓內(nèi),則稱圓為該橢圓的一個內(nèi)切圓.試問:橢圓是否存在過左焦點(diǎn)的內(nèi)切圓?若存在,求出圓心的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com