科目: 來源: 題型:
【題目】已知雙曲線:經(jīng)過點,且其中一焦點到一條漸近線的距離為1.
(1)求雙曲線的方程;
(2)過點作兩條相互垂直的直線,分別交雙曲線于,兩點,求點到直線距離的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線:的焦點為,直線與軸的交點為,與拋物線的交點為,且.
(1)求拋物線的方程;
(2)過拋物線上一點作兩條互相垂直的弦和,試問直線是否過定點,若是,求出該定點;若不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解某中學學生對數(shù)學學習的情況,從該校抽了名學生,分析了這名學生某次數(shù)學考試成績(單位:分),得到了如下的頻率分布直方圖:
(1)求頻率分布直方圖中的值;
(2)根據(jù)頻率分布直方圖估計該組數(shù)據(jù)的中位數(shù)(精確到);
(3)在這名學生的數(shù)學成績中,從成績在的學生中任選人,求次人的成績都在中的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目: 來源: 題型:
【題目】“割圓術(shù)”是劉徽最突出的數(shù)學成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計算圓的周長,面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結(jié)果是當時世界上圓周率計算的最精確數(shù)據(jù).如圖,當分割到圓內(nèi)接正六邊形時,某同學利用計算機隨機模擬法向圓內(nèi)隨機投擲點,計算得出該點落在正六邊形內(nèi)的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),曲線在點處的切線方程為.
(1)求函數(shù)的解析式,并證明:.
(2)已知,且函數(shù)與函數(shù)的圖象交于,兩點,且線段的中點為,證明:.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:的離心率為,焦距為.
(1)求的方程;
(2)若斜率為的直線與橢圓交于,兩點(點,均在第一象限),為坐標原點.
①證明:直線的斜率依次成等比數(shù)列.
②若與關(guān)于軸對稱,證明:.
查看答案和解析>>
科目: 來源: 題型:
【題目】通過隨機詢問110名性別不同的大學生是否愛好某項運動,得到如下的列聯(lián)表:
男 | 女 | 合計 | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
合計 | 60 | 50 | 110 |
由K2=,
附表:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是( )
A.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關(guān)”
B.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關(guān)”
C.有99%以上的把握認為“愛好該項運動與性別有關(guān)”
D.有99%以上的把握認為“愛好該項運動與性別無關(guān)”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com