相關(guān)習(xí)題
 0  264666  264674  264680  264684  264690  264692  264696  264702  264704  264710  264716  264720  264722  264726  264732  264734  264740  264744  264746  264750  264752  264756  264758  264760  264761  264762  264764  264765  264766  264768  264770  264774  264776  264780  264782  264786  264792  264794  264800  264804  264806  264810  264816  264822  264824  264830  264834  264836  264842  264846  264852  264860  266669 

科目: 來(lái)源: 題型:

【題目】在邊長(zhǎng)為2的等邊三角形中,點(diǎn)分別是邊上的點(diǎn),滿足,(),將沿直線折到的位置.在翻折過(guò)程中,下列結(jié)論不成立的是(

A.在邊上存在點(diǎn),使得在翻折過(guò)程中,滿足平面

B.存在,使得在翻折過(guò)程中的某個(gè)位置,滿足平面平面

C.,當(dāng)二面角為直二面角時(shí),

D.在翻折過(guò)程中,四棱錐體積的最大值記為的最大值為

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】沙漏是古代的一種計(jì)時(shí)裝置,它由兩個(gè)形狀完全相同的容器和一個(gè)狹窄的連接管道組成,開始時(shí)細(xì)沙全部在上部容器中,細(xì)沙通過(guò)連接管道全部流到下部容器所需要的時(shí)間稱為該沙漏的一個(gè)沙時(shí).如圖,某沙漏由上下兩個(gè)圓錐組成,圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時(shí),其高度為圓錐高度的(細(xì)管長(zhǎng)度忽略不計(jì)).假設(shè)該沙漏每秒鐘漏下的沙,且細(xì)沙全部漏入下部后,恰好堆成一個(gè)蓋住沙漏底部的圓錐形沙堆.以下結(jié)論正確的是(

A.沙漏中的細(xì)沙體積為

B.沙漏的體積是

C.細(xì)沙全部漏入下部后此錐形沙堆的高度約為2.4cm

D.該沙漏的一個(gè)沙時(shí)大約是1985秒(

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)y=fx)和y=gx)在[-2,2]的圖像如圖所示,給出下列四個(gè)命題:

①方程f[gx]=0有且僅有6個(gè)根

②方程g[fx]=0有且僅有3個(gè)根

③方程f[fx]=0有且僅有5個(gè)根

④方程g[gx]=0有且僅有4個(gè)根

其中正確的命題是___

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)的圖象關(guān)于直線對(duì)稱,則(

A.函數(shù)為奇函數(shù)

B.函數(shù)上單調(diào)遞增

C.,則的最小值為

D.函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù),.

1)記,試判斷函數(shù)的極值點(diǎn)的情況;

2)若有且僅有兩個(gè)整數(shù)解,求的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某物流公司專營(yíng)從甲地到乙地的貨運(yùn)業(yè)務(wù)(貨物全部用統(tǒng)一規(guī)格的包裝箱包裝),現(xiàn)統(tǒng)計(jì)了最近100天內(nèi)每天可配送的貨物量,按照可配送貨物量T(單位:箱)分成了以下幾組:,,,,,并繪制了如圖所示的頻率分布直方圖(同一組數(shù)據(jù)用該組數(shù)據(jù)的區(qū)間中點(diǎn)值作代表,將頻率視為概率).

1)該物流公司負(fù)責(zé)人決定用分層抽樣的方法從前3組中隨機(jī)抽出11天的數(shù)據(jù)來(lái)分析可配送貨物量少的原因,并從這11天的數(shù)據(jù)中再抽出3天的數(shù)據(jù)進(jìn)行財(cái)務(wù)分析,求這3天的數(shù)據(jù)中至少有2天的數(shù)據(jù)來(lái)自這一組的概率.

2)由頻率分布直方圖可以認(rèn)為,該物流公司每日的可配送貨物量T(單位:箱)服從正態(tài)分布,其中近似為樣本平均數(shù).

(。┰?yán)迷撜龖B(tài)分布,估計(jì)該物流公司2000天內(nèi)日貨物配送量在區(qū)間內(nèi)的天數(shù)(結(jié)果保留整數(shù)).

(ⅱ)該物流公司負(fù)責(zé)人根據(jù)每日的可配送貨物量為公司裝卸貨物的員工制定了兩種不同的工作獎(jiǎng)勵(lì)方案.

方案一:直接發(fā)放獎(jiǎng)金,按每日的可配送貨物量劃分為以下三級(jí):時(shí),獎(jiǎng)勵(lì)50元;,獎(jiǎng)勵(lì)80元;時(shí),獎(jiǎng)勵(lì)120.

方案二:利用抽獎(jiǎng)的方式獲得獎(jiǎng)金,其中每日的可配送貨物量不低于時(shí)有兩次抽獎(jiǎng)機(jī)會(huì),每日的可配送貨物量低于時(shí)只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)的獎(jiǎng)金及對(duì)應(yīng)的概率分別為

獎(jiǎng)金

50

100

概率

小張恰好為該公司裝卸貨物的一名員工,試從數(shù)學(xué)期望的角度分析,小張選擇哪種獎(jiǎng)勵(lì)方案對(duì)他更有利?

附:若,則.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知,又有四個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為,(為參數(shù)),將曲線經(jīng)過(guò)伸縮變換后得到曲線,在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

1)說(shuō)明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;

2)已知點(diǎn)是曲線上的任意一點(diǎn),求點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知,.

1)當(dāng)時(shí),求的切線方程;

2)若對(duì)任意時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】工廠質(zhì)檢員從生產(chǎn)線上每半個(gè)小時(shí)抽取一件產(chǎn)品并對(duì)其某個(gè)質(zhì)量指標(biāo)進(jìn)行檢測(cè),一共抽取了件產(chǎn)品,并得到如下統(tǒng)計(jì)表.該廠生產(chǎn)的產(chǎn)品在一年內(nèi)所需的維護(hù)次數(shù)與指標(biāo)有關(guān),具體見下表.

質(zhì)量指標(biāo)

頻數(shù)

一年內(nèi)所需維護(hù)次數(shù)

(1)以每個(gè)區(qū)間的中點(diǎn)值作為每組指標(biāo)的代表,用上述樣本數(shù)據(jù)估計(jì)該廠產(chǎn)品的質(zhì)量指標(biāo)的平均值(保留兩位小數(shù));

(2)用分層抽樣的方法從上述樣本中先抽取件產(chǎn)品,再?gòu)?/span>件產(chǎn)品中隨機(jī)抽取件產(chǎn)品,求這件產(chǎn)品的指標(biāo)都在內(nèi)的概率;

(3)已知該廠產(chǎn)品的維護(hù)費(fèi)用為元/次,工廠現(xiàn)推出一項(xiàng)服務(wù):若消費(fèi)者在購(gòu)買該廠產(chǎn)品時(shí)每件多加元,該產(chǎn)品即可一年內(nèi)免費(fèi)維護(hù)一次.將每件產(chǎn)品的購(gòu)買支出和一年的維護(hù)支出之和稱為消費(fèi)費(fèi)用.假設(shè)這件產(chǎn)品每件都購(gòu)買該服務(wù),或者每件都不購(gòu)買該服務(wù),就這兩種情況分別計(jì)算每件產(chǎn)品的平均消費(fèi)費(fèi)用,并以此為決策依據(jù),判斷消費(fèi)者在購(gòu)買每件產(chǎn)品時(shí)是否值得購(gòu)買這項(xiàng)維護(hù)服務(wù)?

查看答案和解析>>

同步練習(xí)冊(cè)答案