科目: 來源: 題型:
【題目】已知橢圓的離心率是,且經(jīng)過點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過右焦點(diǎn)F的直線l與橢圓C相交于A,B兩點(diǎn),點(diǎn)B關(guān)于x軸的對稱點(diǎn)為H,試問的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某企業(yè)為了參加上海的進(jìn)博會(huì),大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:
試銷單價(jià)x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量y(件) | q | 84 | 83 | 80 | 75 | 68 |
已知.參考公式:,
(1)求出q的值;
(2)已知變量x,y具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價(jià)x(元)的線性回歸方程;
(3)用表示用正確的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)的殘差的絕對值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從6個(gè)銷售數(shù)據(jù)中任取2個(gè),求抽取的2個(gè)銷售數(shù)據(jù)中至少有一個(gè)是“好數(shù)據(jù)”的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),點(diǎn)是函數(shù)圖象上不同的兩點(diǎn),則為坐標(biāo)原點(diǎn))的取值范圍是( 。
A. B.
C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線:.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)曲線與直線的交點(diǎn)為,,是曲線上的動(dòng)點(diǎn),求面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:的離心率,點(diǎn),點(diǎn)、分別為橢圓的上頂點(diǎn)和左焦點(diǎn),且.
(1)求橢圓的方程;
(2)若過定點(diǎn)的直線與橢圓交于,兩點(diǎn)(在,之間)設(shè)直線的斜率,在軸上是否存在點(diǎn),使得以,為鄰邊的平行四邊形為菱形?如果存在,求出的取值范圍?如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市教育部門為研究高中學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對該市某校200名高中學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,數(shù)據(jù)如下表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間(分鐘) | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均課外體育運(yùn)動(dòng)時(shí)間在上的學(xué)生評價(jià)為“課外體育達(dá)標(biāo)”.
(1)請根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
(2)從上述課外體育不達(dá)標(biāo)的學(xué)生中,按性別用分層抽樣的方法抽取10名學(xué)生,再從這10名學(xué)生中隨機(jī)抽取3人了解他們鍛煉時(shí)間偏少的原因,記所抽取的3人中男生的人數(shù)為隨機(jī)變量為,求的分布列和數(shù)學(xué)期望.
(3)將上述調(diào)查所得到的頻率視為概率來估計(jì)全市的情況,現(xiàn)在從該市所有高中學(xué)生中,抽取4名學(xué)生,求其中恰好有2名學(xué)生是課外體育達(dá)標(biāo)的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,為多面體,平面與平面垂直,點(diǎn)在線段上, 都是正三角形.
(1)證明:直線∥面;
(2)在線段上是否存在一點(diǎn),使得二面角的余弦值是,若不存在請說明理由,若存在請求出點(diǎn)所在的位置。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線的兩頂點(diǎn)分別為,為雙曲線的一個(gè)焦點(diǎn),為虛軸的一個(gè)端點(diǎn),若在線段上(不含端點(diǎn))存在兩點(diǎn),使得,則雙曲線的漸近線斜率的平方的取值范圍是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com