科目: 來源: 題型:
【題目】“垛積術”是我國古代數學的重要成就之一.南宋數學家楊輝在《詳解九章算法》中記載了“方垛”的計算方法:“果子以垛,下方十四個,問計幾何?術曰:下方加一,乘下方為平積.又加半為高,以乘下方為高積.如三而一.”意思是說,將果子以方垛的形式擺放(方垛即每層均為正方形,自下而上每層每邊果子數依次遞減1個,最上層為1個),最下層每邊果子數為14個,問共有多少個果子?計算方法用算式表示為.利用“方垛”的計算方法,可計算最下層每邊果子數為14個的“三角垛”(三角垛即每層均為正三角形,自下而上每層每邊果子數依次遞減1個,最上層為1個)共有果子數為( )
A.420個B.560個C.680個D.1015個
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的2個焦點與1個短軸端點為頂點的三角形的面積為2。
(1)求橢圓的方程;
(2)如圖,斜率為k的直線l過橢圓的右焦點F,且與橢圓交與A,B兩點,以線段AB為直徑的圓截直線x=1所得的弦的長度為,求直線l的方程。
查看答案和解析>>
科目: 來源: 題型:
【題目】從0,1,2,3,4,5,6中取出三個不同的數字組成一個三位數,則這個三位數的各個位上的數字之和為奇數的取法共有_________種.(用數字作答)
查看答案和解析>>
科目: 來源: 題型:
【題目】從某工廠的一個車間抽取某種產品50件,產品尺寸(單位:cm)落在各個小組的頻數分布如下表:
數據分組 | [12.5,15.5) | [15.5,18.5) | [18.5,21.5) | [21.5,24.5) | [24.5,27.5) | [27.5,30.5) | [30.5,33.5) |
頻數 | 3 | 8 | 9 | 12 | 10 | 5 | 3 |
(1)根據頻數分布表,求該產品尺寸落在[27.5,33.5]內的概率;
(2)求這50件產品尺寸的樣本平均數(同一組中的數據用該組區(qū)間的中點值作代表);
(3)根據頻數分布對應的直方圖,可以認為這種產品尺寸服從正態(tài)分布,其中近似為樣本平均值,近似為樣本方差,經計算得.利用該正態(tài)分布,求().
附:(1)若隨機變量服從正態(tài)分布,則;(2).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com