科目: 來源: 題型:
【題目】某班級共有50名同學(xué)(男女各占一半),為弘揚(yáng)傳統(tǒng)文化,班委組織了“古詩詞男女對抗賽”,將同學(xué)隨機(jī)分成25組,每組男女同學(xué)各一名,每名同學(xué)均回答同樣的五個不同問題,答對一題得一分,答錯或不答得零分,總分5分為滿分.最后25組同學(xué)得分如下表:
組別號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
男同學(xué)得分 | 5 | 4 | 5 | 5 | 4 | 5 | 5 | 4 | 4 | 4 | 5 | 5 | 4 |
女同學(xué)得分 | 4 | 3 | 4 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 3 | 5 |
分差 | 1 | 1 | 1 | 0 | -1 | 0 | 1 | -1 | -1 | -1 | 0 | 2 | -1 |
組別號 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
男同學(xué)得分 | 4 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 4 | 3 | 3 | |
女同學(xué)得分 | 5 | 3 | 4 | 5 | 4 | 3 | 5 | 5 | 3 | 4 | 5 | 5 | |
分差 | -1 | 0 | 0 | -1 | 0 | 1 | 0 | 0 | 2 | 0 | -2 | -2 |
(I)完成列聯(lián)表,并判斷是否有90%的把握認(rèn)為“該次對抗賽是否得滿分”與“同學(xué)性別”有關(guān);
(Ⅱ)某課題研究小組假設(shè)各組男女同學(xué)分差服從正態(tài)分布,首先根據(jù)前20組男女同學(xué)的分差確定和,然后根據(jù)后面5組同學(xué)的分差來檢驗?zāi)P,檢驗方法是:記后面5組男女同學(xué)分差與的差的絕對值分別為,若出現(xiàn)下列兩種情況之一,則不接受該模型,否則接受該模型.①存在;②記滿足的i的個數(shù)為k,在服從正態(tài)分布的總體(個體數(shù)無窮大)中任意取5個個體,其中落在區(qū)間內(nèi)的個體數(shù)大于或等于k的概率為P,.
試問該課題研究小組是否會接受該模型.
0.10 | 0.05 | 0.010 | |
2.706 | 3.841 | 6.635 |
參考公式和數(shù)據(jù):
,;若,有,.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(,且,e為自然對數(shù)的底).
(I)求函數(shù)的單調(diào)區(qū)間
(Ⅱ)若函數(shù)在有兩個不同零點,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線上任意一點(異于頂點)與雙曲線兩頂點連線的斜率之積為.
(I)求雙曲線漸近線的方程;
(Ⅱ)過橢圓上任意一點P(P不在C的漸近線上)分別作平行于雙曲線兩條漸近線的直線,交兩漸近線于兩點,且,是否存在使得該橢圓的離心率為,若存在,求出橢圓方程:若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等差數(shù)列的公差為,前n項和為,且滿足____________.(從①);②成等比數(shù)列;③,這三個條件中任選兩個補(bǔ)充到題干中的橫線位置,并根據(jù)你的選擇解決問題)
(I)求;
(Ⅱ)若,求數(shù)列的前n項和.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正四棱錐中,是邊長為3的等邊三角形,點M是的重心,過點M作與平面PAC垂直的平面,平面與截面PAC交線段的長度為2,則平面與正四棱椎表面交線所圍成的封閉圖形的面積可能為______________.(請將可能的結(jié)果序號填到橫線上)①2;②;③3; ④.
查看答案和解析>>
科目: 來源: 題型:
【題目】春秋以前中國已有“抱甕而出灌”的原始提灌方式,使用提水吊桿——桔槔,后發(fā)展成轆轤.19世紀(jì)末,由于電動機(jī)的發(fā)明,離心泵得到了廣泛應(yīng)用,為發(fā)展機(jī)械提水灌溉提供了條件.圖形如圖所示為灌溉抽水管道在等高圖的上垂直投影,在A處測得B處的仰角為37度,在A處測得C處的仰角為45度,在B處測得C處的仰角為53度,A點所在等高線值為20米,若BC管道長為50米,則B點所在等高線值為( )(參考數(shù)據(jù))
A.30米B.50米C.60米D.70米
查看答案和解析>>
科目: 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,拋物線E頂點在坐標(biāo)原點,焦點為.以坐標(biāo)原點為極點,x軸非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求拋物線E的極坐標(biāo)方程;
(Ⅱ)過點傾斜角為的直線l交E于M,N兩點,若,求.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓,過點的兩條不同的直線與橢圓E分別相交于A,B和C,D四點,其中A為橢圓E的右頂點.
(1)求以AB為直徑的圓的方程;
(2)設(shè)以AB為直徑的圓和以CD為直徑的圓相交于M,N兩點,探究直線MN是否經(jīng)過定點,若經(jīng)過定點,求出定點坐標(biāo);若不經(jīng)過定點,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等差數(shù)列的公差為,前n項和為,且滿足____________.(從①);②成等比數(shù)列;③,這三個條件中任選兩個補(bǔ)充到題干中的橫線位置,并根據(jù)你的選擇解決問題)
(I)求;
(Ⅱ)若,求數(shù)列的前n項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com