相關(guān)習題
 0  265220  265228  265234  265238  265244  265246  265250  265256  265258  265264  265270  265274  265276  265280  265286  265288  265294  265298  265300  265304  265306  265310  265312  265314  265315  265316  265318  265319  265320  265322  265324  265328  265330  265334  265336  265340  265346  265348  265354  265358  265360  265364  265370  265376  265378  265384  265388  265390  265396  265400  265406  265414  266669 

科目: 來源: 題型:

【題目】甲、乙兩人進行象棋比賽,采取五局三勝制(不考慮平局,先贏得三場的人為獲勝者,比賽結(jié)束).根據(jù)前期的統(tǒng)計分析,得到甲在和乙的第一場比賽中,取勝的概率為0.5,受心理方面的影響,前一場比賽結(jié)果會對甲的下一場比賽產(chǎn)生影響,如果甲在某一場比賽中取勝,則下一場取勝率提高0.1,反之,降低0.1.則甲以3:1取得勝利的概率為( )

A.0.162B.0.18C.0.168D.0.174

查看答案和解析>>

科目: 來源: 題型:

【題目】已知長方體,,,,已知P是矩形內(nèi)一動點,與平面所成角為,設(shè)P點形成的軌跡長度為,則_________;當的長度最短時,三棱錐的外接球的表面積為_____________.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)求 函數(shù)的單調(diào)區(qū)間;

2)定義:對于函數(shù),若存在,使成立,則稱為函數(shù)的不動點. 如果函數(shù)存在兩個不同的不動點,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四邊形中,,以為折痕把折起,使點到達點的位置,且.

1)證明:平面

2)若的中點,二面角等于60°,求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學等六門選考科目構(gòu)成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個分數(shù)區(qū)間,得到考生的等級成績.

某校高一年級共2000人,為給高一學生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布N(60,169).

(Ⅰ)求物理原始成績在區(qū)間(47,86)的人數(shù);

(Ⅱ)按高考改革方案,若從全省考生中隨機抽取3人,記X表示這3人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學期望.

(附:若隨機變量,則,,

查看答案和解析>>

科目: 來源: 題型:

【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”. 為弘揚中國傳統(tǒng)文化,某校在周末學生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須相鄰安排的概率為( )

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線的焦點為,過作斜率為的直線,兩點,以線段為直徑的圓.時,圓的半徑為2.

1)求的方程;

2)已知點,對任意的斜率,圓上是否總存在點滿足,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)處取得極值.

1)求,并求的單調(diào)區(qū)間;

2)證明:當,時,.

查看答案和解析>>

科目: 來源: 題型:

【題目】年是打贏藍天保衛(wèi)戰(zhàn)三年行動計劃的決勝之年,近年來,在各地各部門共同努力下,藍天保衛(wèi)戰(zhàn)各項任務(wù)措施穩(wěn)步推進,取得了積極成效,某學生隨機收集了甲城市近兩年上半年中各天的空氣量指數(shù),得到頻數(shù)分布表如下:

年上半年中天的頻數(shù)分布表

的分組

天數(shù)

年上半年中天的頻數(shù)分布表

的分組

天數(shù)

1)估計年上半年甲城市空氣質(zhì)量優(yōu)良天數(shù)的比例;

2)求年上半年甲城市的平均數(shù)和標準差的估計值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);(精確到

3)用所學的統(tǒng)計知識,比較年上半年與年上半年甲城市的空氣質(zhì)量情況.

附:

的分組

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐中,四邊形為正方形,,分別為中點.

[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/18/2487522753945600/2488179565404160/STEM/3bba3a8519b8447aaec6f2ca7eb73ba0.png]

1)證明:平面;

2)已知,,求三棱錐的體積.

查看答案和解析>>

同步練習冊答案