相關(guān)習題
 0  265369  265377  265383  265387  265393  265395  265399  265405  265407  265413  265419  265423  265425  265429  265435  265437  265443  265447  265449  265453  265455  265459  265461  265463  265464  265465  265467  265468  265469  265471  265473  265477  265479  265483  265485  265489  265495  265497  265503  265507  265509  265513  265519  265525  265527  265533  265537  265539  265545  265549  265555  265563  266669 

科目: 來源: 題型:

【題目】已知定點S( -20) ,T(2,0),動點P為平面上一個動點,且直線SP、TP的斜率之積為.

1)求動點P的軌跡E的方程;

2)設(shè)點B為軌跡Ey軸正半軸的交點,是否存在直線l,使得l交軌跡EMN兩點,且F(1,0)恰是△BMN的垂心?若存在,求l的方程;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)求的極值;

2)若方程有三個解,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】2020年春季,某出租汽車公司決定更換一批新的小汽車以代替原來報廢的出租車,現(xiàn)有采購成本分別為萬元/輛和萬元/輛的兩款車型,根據(jù)以往這兩種出租車車型的數(shù)據(jù),得到兩款出租車車型使用壽命頻數(shù)表如下:

1)填寫下表,并判斷是否有的把握認為出租車的使用壽命年數(shù)與汽車車型有關(guān)?

2)從的車型中各隨機抽取車,以表示這車中使用壽命不低于年的車數(shù),求的分布列和數(shù)學期望;

3)根據(jù)公司要求,采購成本由出租公司負責,平均每輛出租車每年上交公司萬元,其余維修和保險等費用自理.假設(shè)每輛出租車的使用壽命都是整數(shù)年,用頻率估計每輛出租車使用壽命的概率,分別以這輛出租車所產(chǎn)生的平均利潤作為決策依據(jù),如果你是該公司的負責人,會選擇采購哪款車型?

附:,.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)若,求函數(shù)的零點個數(shù);

2)若函數(shù)的最小值為2,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】將某公司200天的日銷售收入(單位:萬元)統(tǒng)計如下表(1)所示,

日銷售收入

頻數(shù)

12

28

36

54

50

20

頻率

表(1)

1)完成上述頻率分布表,并估計公司這200天的日均銷售收入(同一組中的數(shù)據(jù)用該組所在區(qū)間的中點值代表);

2)已知該公司2020年第一、二季度的日銷售收入如下表(2)所示,第三季度的日銷售收入及其頻率可用表(1)中的數(shù)據(jù)近似代替,且在2020年,當公司日銷售收入為時,員工的日績效為100元,當公司日銷售收入為時,員工的日績效為200元,當公司日銷售收入為時,員工的日績效為300.以頻率估計概率.

①若在第三季度某員工的工作日中隨機抽取2天,記該員工2天的績效之和為,求的分布列以及數(shù)學期望;

②若每個員工每個季度的工作日為50天,估計2020年前三個季度每個員工獲得的績效的總額.

日銷售收入

頻率

0.2

0.3

0.2

0.1

0.1

0.1

表(2)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知四棱錐中,,.

1)求證:平面平面;

2)若點是線段上靠近的三等分點,求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),.

1)當時,求曲線在點處的切線方程;

2)求函數(shù)上的極值;

3)設(shè)函數(shù),若,且對任意的實數(shù),不等式恒成立(e是自然對數(shù)的底數(shù)),求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數(shù)學教師為了調(diào)查高三學生數(shù)學成績與線上學習時間之間的相關(guān)關(guān)系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數(shù)學時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:

分數(shù)不少于120

分數(shù)不足120

合計

線上學習時間不少于5小時

4

19

線上學習時間不足5小時

合計

45

1)請完成上面列聯(lián)表;并判斷是否有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關(guān)”;

2)①按照分層抽樣的方法,在上述樣本中從分數(shù)不少于120分和分數(shù)不足120分的兩組學生中抽取9名學生,設(shè)抽到不足120分且每周線上學習時間不足5小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);

②若將頻率視為概率,從全校高三該次檢測數(shù)學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數(shù)的期望和方差.

(下面的臨界值表供參考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式其中

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)橢圓的離心率為,橢圓上一點到左右兩個焦點的距離之和是4.

1)求橢圓的方程;

2)已知過的直線與橢圓交于、兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學名著,它在幾何學中的研究比西方早1000多年,在《九章算術(shù)》中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱為塹堵(qian du);陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,鱉膈(bie nao)指四個面均為直角三角形的四面體.如圖在塹堵中,.

(1)求證:四棱錐為陽馬;

(2)若,當鱉膈體積最大時,求銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案