相關(guān)習(xí)題
 0  265586  265594  265600  265604  265610  265612  265616  265622  265624  265630  265636  265640  265642  265646  265652  265654  265660  265664  265666  265670  265672  265676  265678  265680  265681  265682  265684  265685  265686  265688  265690  265694  265696  265700  265702  265706  265712  265714  265720  265724  265726  265730  265736  265742  265744  265750  265754  265756  265762  265766  265772  265780  266669 

科目: 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,若橢圓經(jīng)過點,且△PF1F2的面積為2

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)斜率為1的直線與以原點為圓心,半徑為的圓交于AB兩點,與橢圓C交于CD兩點,且),當(dāng)取得最小值時,求直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】以直角坐標(biāo)系的原點為極點O,軸正半軸為極軸,已知點P的直角坐標(biāo)為(1,-5),C的極坐標(biāo)為,若直線l經(jīng)過點P,且傾斜角為,圓C的半徑為4.

(1).求直線l的參數(shù)方程及圓C的極坐標(biāo)方程;

(2).試判斷直線l與圓C有位置關(guān)系.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將的圖象上的所有點(

A.向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變

B.向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍,縱坐標(biāo)不變

C.向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變

D.向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍,縱坐標(biāo)不變

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時,求曲線在點處的切線方程;

2)當(dāng)時,求證:函數(shù)恰有兩個零點.

查看答案和解析>>

科目: 來源: 題型:

【題目】以平面直角坐標(biāo)系中的坐標(biāo)原點為極點,軸的正半抽為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,直線的參數(shù)方程是為參數(shù)).

1)求曲線的直角坐標(biāo)方程;

2)若直線與曲線交于、兩點,且,求直線的傾斜角.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點在橢圓上,、分別為的左、右頂點,直線的斜率之積為,為橢圓的右焦點,直線.

1)求橢圓的方程;

2)直線過點且與橢圓交于、兩點,直線、分別與直線交于、兩點.試問:以為直徑的圓是否過定點?如果是,求出定點坐標(biāo),否則,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知四邊形為梯形,,,四邊形為矩形,且平面平面,又.

1)求證:;

2)求點到平面的距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】某學(xué)校為了解學(xué)生假期參與志愿服務(wù)活動的情況,隨機調(diào)查了名男生,名女生,得到他們一周參與志愿服務(wù)活動時間的統(tǒng)計數(shù)據(jù)如右表(單位:人):

超過小時

不超過小時

1)能否有的把握認(rèn)為該校學(xué)生一周參與志愿服務(wù)活動時間是否超過小時與性別有關(guān)?

(2)以這名學(xué)生參與志愿服務(wù)活動時間超過小時的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學(xué)生中隨機抽查名學(xué)生,試估計這名學(xué)生中一周參與志愿服務(wù)活動時間超過小時的人數(shù).

附:

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系中,直線經(jīng)過點,其傾斜角為,以原點為極點,以軸非負(fù)半軸為極軸,與直角坐標(biāo)系取相同的長度單位,建立極坐標(biāo)系,設(shè)曲線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和極坐標(biāo)方程;

2)若直線與曲線有公共點,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知,,順次是橢圓的右頂點、上頂點和下頂點,橢圓的離心率,且.

1)求橢圓的方程;

2)若斜率的直線過點,直線與橢圓交于兩點,試判斷:以為直徑的圓是否經(jīng)過點,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案