相關習題
 0  265690  265698  265704  265708  265714  265716  265720  265726  265728  265734  265740  265744  265746  265750  265756  265758  265764  265768  265770  265774  265776  265780  265782  265784  265785  265786  265788  265789  265790  265792  265794  265798  265800  265804  265806  265810  265816  265818  265824  265828  265830  265834  265840  265846  265848  265854  265858  265860  265866  265870  265876  265884  266669 

科目: 來源: 題型:

【題目】高三年級某班50名學生期中考試數(shù)學成績的頻率分布直方圖如圖所示,成績分組區(qū)間為:.其中ab,c成等差數(shù)列且.物理成績統(tǒng)計如表.(說明:數(shù)學滿分150分,物理滿分100分)

分組

頻數(shù)

6

9

20

10

5

1)根據(jù)頻率分布直方圖,請估計數(shù)學成績的平均分;

2)根據(jù)物理成績統(tǒng)計表,請估計物理成績的中位數(shù);

3)若數(shù)學成績不低于140分的為“優(yōu)”,物理成績不低于90分的為“優(yōu)”,已知本班中至少有一個“優(yōu)”同學總數(shù)為6人,從數(shù)學成績?yōu)椤皟?yōu)”的同學中隨機抽取2人,求兩人恰好均為物理成績“優(yōu)”的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓,圓,動圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.

1)求曲線C的方程;

2)設不經(jīng)過點的直線l與曲線C相交于A,B兩點,直線QA與直線QB的斜率均存在且斜率之和為-2,證明:直線l過定點.

查看答案和解析>>

科目: 來源: 題型:

【題目】高三年級某班50名學生期中考試數(shù)學成績的頻率分布直方圖如圖所示,成績分組區(qū)間為:.其中a,b,c成等差數(shù)列且.物理成績統(tǒng)計如表.(說明:數(shù)學滿分150分,物理滿分100分)

分組

頻數(shù)

6

9

20

10

5

1)根據(jù)頻率分布直方圖,請估計數(shù)學成績的平均分;

2)根據(jù)物理成績統(tǒng)計表,請估計物理成績的中位數(shù);

3)若數(shù)學成績不低于140分的為“優(yōu)”,物理成績不低于90分的為“優(yōu)”,已知本班中至少有一個“優(yōu)”同學總數(shù)為6人,從此6人中隨機抽取3人,記X為抽到兩個“優(yōu)”的學生人數(shù),求X的分布列和期望值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,三棱錐D-ABC中,,E,F分別為DB,AB的中點,且.

1)求證:平面平面ABC

2)求二面角D-CE-F的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為參數(shù)).直線的參數(shù)方程為參數(shù)).

)求曲線在直角坐標系中的普通方程;

)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,當曲線截直線所得線段的中點極坐標為時,求直線的傾斜角.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

)討論的單調性;

)若有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】設數(shù)列共有項,記該數(shù)列前中的最大項為,該數(shù)列后中的最小項為,

1)若數(shù)列的通項公式為,求數(shù)列的通項公式;

2)若數(shù)列滿足,,求數(shù)列的通項公式;

3)試構造一個數(shù)列,滿足,其中是公差不為零的等差數(shù)列,是等比數(shù)列,使得對于任意給定的正整數(shù),數(shù)列都是單調遞增的,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標系中,設點是橢圓上一點,從原點向圓作兩條切線分別與橢圓交于點,直線的斜率分別記為

1)若圓軸相切于橢圓的右焦點,求圓的方程;

2)若

求證:;

的最大值

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,側棱平面,的中點,,,,.

1)求二面角的余弦值;

2)在線段上是否存在點,使得平面?若存在,求出點的位置,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案