科目: 來(lái)源: 題型:
【題目】已知直線與雙曲線相交于兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)若,求實(shí)數(shù)的值;
(2)是否存在實(shí)數(shù),使得兩點(diǎn)關(guān)于對(duì)稱(chēng)?若存在,求的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知命題:“雙曲線任意一點(diǎn)到直線的距離分別記作,則為定值”為真命題.
(1)求出的值.
(2)已知直線 關(guān)于y軸對(duì)稱(chēng)且使得上的任意點(diǎn)到的距離滿足為定值,求的方程.
(3)已知直線是與(2)中某一條直線平行(或重合)且與橢圓交于兩點(diǎn),求的最大值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】由無(wú)理數(shù)引發(fā)的數(shù)學(xué)危機(jī)一直延續(xù)到19世紀(jì),直到1872年,德國(guó)數(shù)學(xué)家戴德金提出了“戴德金分割”,才結(jié)束了持續(xù)2000多年的數(shù)學(xué)史上的第一次大危機(jī).所謂戴德金分割,是指將有理數(shù)集劃分為兩個(gè)非空的子集與,且滿足,,中的每一個(gè)元素都小于中的每一個(gè)元素,則稱(chēng)為戴德金分割.試判斷,對(duì)于任一戴德金分割,下列選項(xiàng)中不可能成立的是
A.沒(méi)有最大元素,有一個(gè)最小元素
B.沒(méi)有最大元素,也沒(méi)有最小元素
C.有一個(gè)最大元素,有一個(gè)最小元素
D.有一個(gè)最大元素,沒(méi)有最小元素
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的最大值;
(2)若只有一個(gè)極值點(diǎn).
(i)求實(shí)數(shù)的取值范圍;
(ii)證明:.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓,、為橢圓的左、右焦點(diǎn),為橢圓上一點(diǎn),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線,過(guò)點(diǎn)的直線交橢圓于、兩點(diǎn),線段的垂直平分線分別交直線、直線于、兩點(diǎn),當(dāng)最小時(shí),求直線的方程.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在斜三棱柱中,,側(cè)面是邊長(zhǎng)為4的菱形,,,、分別為、的中點(diǎn).
(1)求證:平面;
(2)若,求二面角的正弦值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在棱長(zhǎng)為2的正方體中,點(diǎn)是對(duì)角線上的點(diǎn)(點(diǎn)與、不重合),則下列結(jié)論正確的個(gè)數(shù)為( )
①存在點(diǎn),使得平面平面;
②存在點(diǎn),使得平面;
③若的面積為,則;
④若、分別是在平面與平面的正投影的面積,則存在點(diǎn),使得.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】若橢圓的頂點(diǎn)和焦點(diǎn)中,存在不共線的三點(diǎn)恰為菱形的中心和頂點(diǎn),則的離心率等于( )
A.B.C.或D.或
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com