相關(guān)習(xí)題
 0  265782  265790  265796  265800  265806  265808  265812  265818  265820  265826  265832  265836  265838  265842  265848  265850  265856  265860  265862  265866  265868  265872  265874  265876  265877  265878  265880  265881  265882  265884  265886  265890  265892  265896  265898  265902  265908  265910  265916  265920  265922  265926  265932  265938  265940  265946  265950  265952  265958  265962  265968  265976  266669 

科目: 來源: 題型:

【題目】如圖:在直角坐標(biāo)系中,設(shè)橢圓的左右兩個焦點(diǎn)分別為、.過右焦點(diǎn)軸垂直的直線與橢圓C相交,其中一個交點(diǎn)為.

1)求橢圓C的方程;

2)設(shè)橢圓C的一個頂點(diǎn)為,求點(diǎn)M到直線的距離;

3)過中點(diǎn)的直線交橢圓于P、Q兩點(diǎn),求長的最大值以及相應(yīng)的直線方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)2x,x∈(0,1]

(1)當(dāng)a=-1時,求函數(shù)yf(x)的值域;

(2)若函數(shù)yf(x)x∈(0,1]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為F,短軸的兩個端點(diǎn)分別為A、B,且,為等邊三角形.

1)求橢圓C的方程;

2)如圖,點(diǎn)M在橢圓C上且位于第一象限內(nèi),它關(guān)于坐標(biāo)原點(diǎn)O的對稱點(diǎn)為N;過點(diǎn)Mx軸的垂線,垂足為H,直線與橢圓C交于另一點(diǎn)J,若,試求以線段為直徑的圓的方程;

3)已知是過點(diǎn)A的兩條互相垂直的直線,直線與圓相交于兩點(diǎn),直線與橢圓C交于另一點(diǎn)R;求面積取最大值時,直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列的前項和為,且.

1)計算,,,,并求數(shù)列的通項公式;

2)若數(shù)列滿足,求證:數(shù)列是等比數(shù)列;

3)由數(shù)列的項組成一個新數(shù)列,,,,設(shè)為數(shù)列的前項和,試求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】對于函數(shù)定義已知偶函數(shù)的定義域?yàn)?/span>當(dāng)時,

1)求并求出函數(shù)的解析式;

2)若存在實(shí)數(shù)使得函數(shù)上的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,的參數(shù)方程為t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)求的普通方程和曲線C的直角坐標(biāo)方程;

2)求曲線C上的點(diǎn)到距離的最大值及該點(diǎn)坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)橢圓C的方程為,O為坐標(biāo)原點(diǎn),A為橢團(tuán)的上頂點(diǎn),為其右焦點(diǎn),D是線段的中點(diǎn),且.

1)求橢圓C的方程;

2)過坐標(biāo)原點(diǎn)且斜率為正數(shù)的直線交橢圓CPQ兩點(diǎn),分別作軸,軸,垂足分別為E,F,連接,并延長交橢圓C于點(diǎn)MN兩點(diǎn).

(。┡袛的形狀;

(ⅱ)求四邊形面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知四棱錐的底面為直角梯形,為直角,平面,且.

1)求證:;

2)若,求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】2019年在印度尼西亞日惹舉辦的亞洲乒乓球錦標(biāo)賽男子團(tuán)體決賽中,中國隊與韓國隊相遇,中國隊男子選手A,B,CD,E依次出場比賽,在以往對戰(zhàn)韓國選手的比賽中他們五人獲勝的概率分別是0.8,0.8,0.8,0.75,0.7,并且比賽勝負(fù)相互獨(dú)立.賽會釆用53勝制,先贏3局者獲得勝利.

1)在決賽中,中國隊以31獲勝的概率是多少?

2)求比賽局?jǐn)?shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】《算法統(tǒng)宗》全稱《新編直指算法統(tǒng)宗》,是屮國古代數(shù)學(xué)名著,程大位著.書中有如下問題:“今有五人均銀四十兩,甲得十兩四錢,戊得五兩六錢.問:次第均之,乙丙丁各該若干?”意思是:有5人分40兩銀子,甲分104錢,戊分56錢,且相鄰兩項差相等,則乙丙丁各分幾兩幾錢?(注:1兩等于10錢)(

A.乙分8兩,丙分8兩,丁分8B.乙分82錢,丙分8兩,丁分78

C.乙分92錢,丙分8兩,丁分68D.乙分9兩,丙分8兩,丁分7

查看答案和解析>>

同步練習(xí)冊答案