相關(guān)習題
 0  265921  265929  265935  265939  265945  265947  265951  265957  265959  265965  265971  265975  265977  265981  265987  265989  265995  265999  266001  266005  266007  266011  266013  266015  266016  266017  266019  266020  266021  266023  266025  266029  266031  266035  266037  266041  266047  266049  266055  266059  266061  266065  266071  266077  266079  266085  266089  266091  266097  266101  266107  266115  266669 

科目: 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)寫出直線的直角坐標方程;

(2)設(shè)點的坐標為,若點是曲線截直線所得線段的中點,求的斜率.

查看答案和解析>>

科目: 來源: 題型:

【題目】若函數(shù)為奇函數(shù),且有極小值.

1)求實數(shù)的值;

2)求實數(shù)的取值范圍;

3)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】定義:若無窮數(shù)列滿足是公比為的等比數(shù)列,則稱數(shù)列為“數(shù)列”.設(shè)數(shù)列

1)若,且數(shù)列是“數(shù)列”,求數(shù)列的通項公式;

2)設(shè)數(shù)列的前項和為,且,請判斷數(shù)列是否為“數(shù)列”,并說明理由;

3)若數(shù)列是“數(shù)列”,是否存在正整數(shù),使得?若存在,請求出所有滿足條件的正整數(shù);若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,是一塊半徑為4米的圓形鐵皮,現(xiàn)打算利用這塊鐵皮做一個圓柱形油桶.具體做法是從中剪裁出兩塊全等的圓形鐵皮做圓柱的底面,剪裁出一個矩形做圓柱的側(cè)面(接縫忽略不計),為圓柱的一條母線,點上,點的一條直徑上,分別與直線、相切,都與內(nèi)切.

1)求圓形鐵皮半徑的取值范圍;

2)請確定圓形鐵皮半徑的值,使得油桶的體積最大.(不取近似值)

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為(其中為參數(shù),的傾斜角,且),曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求曲線的普通方程及曲線的直角坐標方程;

2)已知點,曲線交于兩點,與交于點,且,求的普通方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱錐中,頂點在底面上的投影在棱上,,,的中點.

1)求證:平面;

2)求二面角的余弦值;

3)已知點的中點,在棱上是否存在點,使得平面,若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,展現(xiàn)中國文化陰陽轉(zhuǎn)化、對立統(tǒng)一的哲學理念.定義:圖象能將圓的周長和面積同時等分成兩部分的函數(shù)稱為圓的一個太極函數(shù),則下列命題正確的是___________.

1)函數(shù)可以同時是無數(shù)個圓的太極函數(shù);

2)函數(shù)可以是某個圓的太極函數(shù)

3)若函數(shù)是某個圓的太極函數(shù),則函數(shù)的圖象一定是中心對稱圖形;

4)對于任意一個圓,其太極函數(shù)有無數(shù)個.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系中,圓經(jīng)過伸縮變換后得到曲線以坐標原點為極點,軸的正半軸為極軸,并在兩種坐標系中取相同的單位長度,建立極坐標系,直線的極坐標方程為

(1)求曲線的直角坐標方程及直線的直角坐標方程;

(2)設(shè)點上一動點,求點到直線的距離的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知是拋物線上的兩個點,點的坐標為,直線的斜率為.設(shè)拋物線的焦點在直線的下方.

)求k的取值范圍;

)設(shè)CW上一點,且,過兩點分別作W的切線,記兩切線的交點為. 判斷四邊形是否為梯形,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(1),求函數(shù)的所有零點;

(2),證明函數(shù)不存在極值.

查看答案和解析>>

同步練習冊答案