相關(guān)習(xí)題
 0  266155  266163  266169  266173  266179  266181  266185  266191  266193  266199  266205  266209  266211  266215  266221  266223  266229  266233  266235  266239  266241  266245  266247  266249  266250  266251  266253  266254  266255  266257  266259  266263  266265  266269  266271  266275  266281  266283  266289  266293  266295  266299  266305  266311  266313  266319  266323  266325  266331  266335  266341  266349  266669 

科目: 來源: 題型:

【題目】近年來,隨著國家綜合國力的提升和科技的進(jìn)步,截至年底,中國鐵路運(yùn)營里程達(dá)萬千米,這個(gè)數(shù)字比年增長了倍;高鐵運(yùn)營里程突破萬千米,占世界高鐵運(yùn)營里程的以上,居世界第一位.如表截取了年中國高鐵密度的發(fā)展情況(單位:千米/萬平方千米).

年份

年份代碼

高鐵密度

已知高鐵密度與年份代碼之間滿足關(guān)系式為大于的常數(shù)).

1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程(精確到位);

2)利用(1)的結(jié)論,預(yù)測到哪一年,高鐵密度會(huì)超過千米/萬平方千米.

參考公式:設(shè)具有線性相關(guān)系的兩個(gè)變量的一組數(shù)據(jù)為,則回歸方程的系數(shù):

參考數(shù)據(jù):,,,,

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱柱中,平面,四邊形為平行四邊形,,

1)若,求證:平面

2)若,,求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知過橢圓的四個(gè)頂點(diǎn)與坐標(biāo)軸垂直的四條直線圍成的矩形是第一象限內(nèi)的點(diǎn))的面積為,且過橢圓的右焦點(diǎn)的傾斜角為的直線過點(diǎn)

1)求橢圓的標(biāo)準(zhǔn)方程

2)若射線與橢圓的交點(diǎn)分別為.當(dāng)它們的斜率之積為時(shí),試問的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù),過點(diǎn)軸的垂線交函數(shù)圖象于點(diǎn),以為切點(diǎn)作函數(shù)圖象的切線交軸于點(diǎn),再過軸的垂線交函數(shù)圖象于點(diǎn),以此類推得點(diǎn),記的橫坐標(biāo)為,

1)證明數(shù)列為等比數(shù)列并求出通項(xiàng)公式;

2)設(shè)直線與函數(shù)的圖象相交于點(diǎn),記(其中為坐標(biāo)原點(diǎn)),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目: 來源: 題型:

【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)若射線 與曲線交于,兩點(diǎn),與曲線交于兩點(diǎn),求取最大值時(shí)的值

查看答案和解析>>

科目: 來源: 題型:

【題目】謝賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝賓斯基在1915年提出,先作一個(gè)正三角形.挖去一個(gè)“中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形),然后在剩下的小三角形中又挖去一個(gè)“中心三角形”,我們用白色代表挖去的面積,那么黑三角形為剩下的面積(我們稱黑三角形為謝賓斯基三角形).向圖中第5個(gè)大正三角形中隨機(jī)撒512粒大小均勻的細(xì)小顆粒物,則落在白色區(qū)域的細(xì)小顆粒物的數(shù)量約是(

A.256B.350C.162D.96

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐PABCD的底面ABCD為直角梯形,BC//AD,且AD=2AB=2BC=2,∠BAD=90°,△PAD為等邊三角形,平面ABCD⊥平面PAD;點(diǎn)EM分別為PD、PC的中點(diǎn).

1)證明:CE//平面PAB;

2)求三棱錐MBAD的體積;

3)求直線DM與平面ABM所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1,公比q>0,S1+a1,S3+a3,S2+a2成等差數(shù)列.

1)求{an};

2)設(shè)bn,求數(shù)列{cn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)fxx+1xR.

1)求函數(shù)fx)的最小正周期并寫出函數(shù)fx)圖象的對(duì)稱軸方程和對(duì)稱中心;

2)求函數(shù)fx)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】(本小題滿分12分)已知圓C過點(diǎn)P(1,1),且與圓M:關(guān)于直線對(duì)稱.

(1)求圓C的方程:

(2)設(shè)Q為圓C上的一個(gè)動(dòng)點(diǎn),求最小值;

(3)過點(diǎn)P作兩條相異直線分別與圓C交與A,B,且直線PA和直線PB的傾斜角互補(bǔ),O為坐標(biāo)原點(diǎn),試判斷直線OP與直線AB是否平行?請(qǐng)說明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案