科目: 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),令,是否存在區(qū)間,使得函數(shù)在區(qū)間上的值域?yàn)?/span>,若存在,求實(shí)數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中取兩個(gè)定點(diǎn),,再取兩個(gè)動(dòng)點(diǎn),,且.
(1)求直線與的交點(diǎn)的軌跡的方程;
(2)過的直線與軌跡交于兩點(diǎn),過點(diǎn)作軸且與軌跡交于另一點(diǎn),為軌跡的右焦點(diǎn),若,求證:
查看答案和解析>>
科目: 來源: 題型:
【題目】某校舉行運(yùn)動(dòng)會(huì),其中三級(jí)跳遠(yuǎn)的成績(jī)?cè)?/span>米以上的進(jìn)入決賽,把所得的成績(jī)進(jìn)行整理后,分成組畫出頻率分布直方圖的一部分(如圖),已知第組的頻數(shù)是.
(1)求進(jìn)入決賽的人數(shù);
(2)用樣本的頻率代替概率,記表示兩人中進(jìn)入決賽的人數(shù),求得分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,是一個(gè)半圓柱與多面體構(gòu)成的幾何體,平面與半圓柱的下底面共面,且, 為弧上(不與重合)的動(dòng)點(diǎn).
(1)證明: 平面;
(2)若四邊形為正方形,且, ,求二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了保障人民群眾的身體健康,在預(yù)防新型冠狀病毒期間,貴陽市市場(chǎng)監(jiān)督管理局加強(qiáng)了對(duì)市場(chǎng)的監(jiān)管力度,對(duì)生產(chǎn)口罩的某工廠利用隨機(jī)數(shù)表對(duì)生產(chǎn)的個(gè)口罩進(jìn)行抽樣測(cè)試是否合格,先將個(gè)口罩進(jìn)行編號(hào),編號(hào)分別為;從中抽取個(gè)樣本,如下提供隨機(jī)數(shù)表的第行到第行:
若從表中第行第列開始向右依次讀取個(gè)數(shù)據(jù),則得到的第個(gè)樣本編號(hào)為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】某果園種植“糖心蘋果”已有十余年,根據(jù)其種植規(guī)模與以往的種植經(jīng)驗(yàn),產(chǎn)自該果園的單個(gè)“糖心蘋果”的果徑(最大橫切面直徑,單位:)在正常環(huán)境下服從正態(tài)分布.
(1)一顧客購買了20個(gè)該果園的“糖心蘋果”,求會(huì)買到果徑小于56的概率;
(2)為了提高利潤(rùn),該果園每年投入一定的資金,對(duì)種植、采摘、包裝、宣傳等環(huán)節(jié)進(jìn)行改進(jìn).如圖是2009年至2018年,該果園每年的投資金額(單位:萬元)與年利潤(rùn)增量(單位:萬元)的散點(diǎn)圖:
該果園為了預(yù)測(cè)2019年投資金額為20萬元時(shí)的年利潤(rùn)增量,建立了關(guān)于的兩個(gè)回歸模型;
模型①:由最小二乘公式可求得與的線性回歸方程:;
模型②:由圖中樣本點(diǎn)的分布,可以認(rèn)為樣本點(diǎn)集中在曲線:的附近,對(duì)投資金額做交換,令,則,且有,,,.
(I)根據(jù)所給的統(tǒng)計(jì)量,求模型②中關(guān)于的回歸方程;
(II)根據(jù)下列表格中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并選擇擬合精度更高、更可靠的模型,預(yù)測(cè)投資金額為20萬元時(shí)的年利潤(rùn)增量(結(jié)果保留兩位小數(shù)).
回歸模型 | 模型① | 模型② |
回歸方程 | ||
102.28 | 36.19 |
附:若隨機(jī)變量,則,;樣本的最小乘估計(jì)公式為,;
相關(guān)指數(shù).
參考數(shù)據(jù):,,,.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知多面體的底面是邊長(zhǎng)為2的菱形,平面,,且.
(1)證明:平面平面;
(2)若直線與平面所成的角為45°,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)的定義域?yàn)?/span>,若存在一次函數(shù),使得對(duì)于任意的,都有恒成立,則稱函數(shù)在上的弱漸進(jìn)函數(shù).下列結(jié)論正確的是______.(寫出所有正確命題的序號(hào))
①是在上的弱漸進(jìn)函數(shù);
②是在上的弱漸進(jìn)函數(shù);
③是在上的弱漸進(jìn)函數(shù);
④是在上的弱漸進(jìn)函數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出的普通方程及的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在上,點(diǎn)在上,求的最小值及此時(shí)點(diǎn)的直角坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com