相關(guān)習(xí)題
 0  266272  266280  266286  266290  266296  266298  266302  266308  266310  266316  266322  266326  266328  266332  266338  266340  266346  266350  266352  266356  266358  266362  266364  266366  266367  266368  266370  266371  266372  266374  266376  266380  266382  266386  266388  266392  266398  266400  266406  266410  266412  266416  266422  266428  266430  266436  266440  266442  266448  266452  266458  266466  266669 

科目: 來源: 題型:

【題目】已知函數(shù)x0).

1)若a1,f(x)在(0,+)上是單調(diào)增函數(shù),求b的取值范圍;

2)若a≥2,b1,求方程在(0,1]上解的個數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,長途車站P與地鐵站O的距離為千米,從地鐵站O出發(fā)有兩條道路l1l2,經(jīng)測量,l1,l2的夾角為45°,OPl1的夾角滿足tan(其中0<θ<),現(xiàn)要經(jīng)過P修條直路分別與道路l1,l2交匯于AB兩點,并在A,B處設(shè)立公共自行車停放點.

1)已知修建道路PAPB的單位造價分別為2m/千米和m/千米,若兩段道路的總造價相等,求此時點A,B之間的距離;

2)考慮環(huán)境因素,需要對OAOB段道路進行翻修,OAOB段的翻修單價分別為n/千米和n/千米,要使兩段道路的翻修總價最少,試確定AB點的位置.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè):實數(shù)滿足,其中;

:實數(shù)滿足.

Ⅰ)若,為真,求實數(shù)的取值范圍;

Ⅱ)若的必要不充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)若存在實數(shù),滿足,則的最大值是____

查看答案和解析>>

科目: 來源: 題型:

【題目】(本小題滿分14分)已知函數(shù)fx)=-2lnxx22axa2,其中a>0.

)設(shè)gx)為fx)的導(dǎo)函數(shù),討論gx)的單調(diào)性;

)證明:存在a∈0,1),使得fx≥0恒成立,且fx)=0在區(qū)間(1,+)內(nèi)有唯一解.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的左右焦點分別為,由4個點、組成了一個高為,面積為的等腰梯形.

1)求橢圓的方程;

2)過點的直線和橢圓交于兩點,求面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,三棱柱中,分別為,的中點.

1)證明:直線平面

2,,,求平面和平面所成的角(銳角)的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了推行“智慧課堂”教學(xué),某老師分別用傳統(tǒng)教學(xué)和“智慧課堂”兩種不同的教學(xué)方式,在甲、乙兩個平行班級進行教學(xué)實驗,為了比較教學(xué)效果,期屮考試后,分別從兩個班級屮各隨機抽取20名學(xué)生的成績進行統(tǒng)計,結(jié)果如下表:記成績不低于70分者為“成績優(yōu)良”.

分?jǐn)?shù)

甲班頻數(shù)

5

6

4

4

1

乙班頻數(shù)

1

3

6

5

5

(1)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷“成績優(yōu)良與教學(xué)方式是否有關(guān)”?

甲班

乙班

總計

成績優(yōu)良

p>成績不優(yōu)良

總計

附: .

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采川分層扣樣的方法扣取8人進行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若,試判斷的零點個數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(x2-1)lnx-x2+2x.

(1)求曲線y=f(x)在點(2,f(2))處的切線方程;

(2)證明:f(x)≥1.

查看答案和解析>>

同步練習(xí)冊答案