相關(guān)習題
 0  266392  266400  266406  266410  266416  266418  266422  266428  266430  266436  266442  266446  266448  266452  266458  266460  266466  266470  266472  266476  266478  266482  266484  266486  266487  266488  266490  266491  266492  266494  266496  266500  266502  266506  266508  266512  266518  266520  266526  266530  266532  266536  266542  266548  266550  266556  266560  266562  266568  266572  266578  266586  266669 

科目: 來源: 題型:

【題目】公元五世紀,數(shù)學家祖沖之估計圓周率的值的范圍是:3.14159263.1415927,為紀念祖沖之在圓周率的成就,把3.1415926稱為“祖率”,這是中國數(shù)學的偉大成就.某小學教師為幫助同學們了解“祖率”,讓同學們把小數(shù)點后的7位數(shù)字1,4,1,5,9,2,6進行隨機排列,整數(shù)部分3不變,那么可以得到大于3.14的不同數(shù)字有(

A.2280B.2120C.1440D.720

查看答案和解析>>

科目: 來源: 題型:

【題目】已知.

1)試求上的最大值;

2)已知處的切線與軸平行,若存在,,使得,證明:.

查看答案和解析>>

科目: 來源: 題型:

【題目】2018115日至10日,首屆中國國際進口博覽會在國家會展中心(上海)舉行,吸引了58一帶一路沿線國家的超過1000多家企業(yè)參展,成為共建一帶一路的又一個重要支撐.某企業(yè)為了參加這次盛會,提升行業(yè)競爭力,加大了科技投入.該企業(yè)連續(xù)6年來的科技投入(百萬元)與收益(百萬元)的數(shù)據(jù)統(tǒng)計如下:

科技投入

2

4

6

8

10

12

收益

5.6

6.5

12.0

27.5

80.0

129.2

并根據(jù)數(shù)據(jù)繪制散點圖如圖所示:

根據(jù)散點圖的特點,甲認為樣本點分布在指數(shù)曲線的周圍,據(jù)此他對數(shù)據(jù)進行了一些初步處理.如下表:

43.5

4.5

854.0

34.7

12730.4

70

其中,.

1)(i)請根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程(保留一位小數(shù));

ii)根據(jù)所建立的回歸方程,若該企業(yè)想在下一年收益達到2億,則科技投入的費用至少要多少?(其中

2)乙認為樣本點分布在二次曲線的周圍,并計算得回歸方程為,以及該回歸模型的相關(guān)指數(shù),試比較甲乙兩人所建立的模型,誰的擬合效果更好.

附:對于一組數(shù)據(jù),,,,其回歸直線方程的斜率和截距的最小二乘估計分別為,,相關(guān)指數(shù):.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知動圓軸相切,且與圓外切;

(1)求動圓圓心的軌跡的方程;

(2)若直線過定點,且與軌跡交于、兩點,與圓交于、兩點,若點到直線的距離為,求的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,為矩形的邊上一點,且,將沿折起到,使得.



1)證明:平面平面;

2)若,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】若對任意,恒有,則實數(shù)的最小值為(

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知F1、F2是橢圓的左、右焦點,A是橢圓上位于第一象限內(nèi)的一點,點B也在橢圓上,且滿足O是坐標原點),若橢圓的離心率等于

(1)求直線AB的方程;

(2)若三角形ABF2的面積等于,求橢圓的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)fx)既是二次函數(shù)又是冪函數(shù),函數(shù)gx)是R上的奇函數(shù),函數(shù)=+1,則h(2018)+h(2017)+h(2016)+…+h(1)+h(0)+h(﹣1)+…h(﹣2016)+h(﹣2017)+h(﹣2018)=___________

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,在四棱錐,底面為平行四邊形

∠ADC=45°,的中點,⊥平面,,的中點.

(1)證明:⊥平面;

(2)求直線與平面所成角的正切值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),.

1)求函數(shù)的極大值.

2)當時,證明函數(shù)有且只有一個零點.

查看答案和解析>>

同步練習冊答案