科目: 來源: 題型:
【題目】已知的展開式中第5項(xiàng)與第7項(xiàng)的二項(xiàng)數(shù)系數(shù)相等,且展開式的各項(xiàng)系數(shù)之和為1024,則下列說法正確的是( )
A.展開式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為256
B.展開式中第6項(xiàng)的系數(shù)最大
C.展開式中存在常數(shù)項(xiàng)
D.展開式中含項(xiàng)的系數(shù)為45
查看答案和解析>>
科目: 來源: 題型:
【題目】劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個圓的內(nèi)接正n邊形等分成n個等腰三角形(如圖所示),當(dāng)n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運(yùn)用割圓術(shù)的思想,得到的近似值為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】若定義在上的函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若、、滿足,則稱比更接近.當(dāng),試比較和哪個更接近,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】
在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(a為參數(shù)),在以原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.
(1)求C的普通方程和l的傾斜角;
(2)設(shè)點(diǎn),l和C交于A,B兩點(diǎn),求.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓E的一個頂點(diǎn)為,焦點(diǎn)在x軸上,若橢圓的右焦點(diǎn)到直線的距離是3.
求橢圓E的方程;
設(shè)過點(diǎn)A的直線l與該橢圓交于另一點(diǎn)B,當(dāng)弦AB的長度最大時,求直線l的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為ρ= 4cosθ,直線l的參數(shù)方程為(t為參數(shù)).
(1)求曲線的直角坐標(biāo)方程及直線l的普通方程;
(2)若曲線的參數(shù)方程為(α為參數(shù)),曲線上點(diǎn)P的極角為Q為曲線上的動點(diǎn),求PQ的中點(diǎn)M到直線l距離的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,是軸正半軸上兩點(diǎn)(在的左側(cè)),且,過,作軸的垂線,與拋物線在第一象限分別交于,兩點(diǎn).
(Ⅰ)若,點(diǎn)與拋物線的焦點(diǎn)重合,求直線的斜率;
(Ⅱ)若為坐標(biāo)原點(diǎn),記的面積為,梯形的面積為,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】近年來,南寧大力實(shí)施“二產(chǎn)補(bǔ)短板、三產(chǎn)強(qiáng)優(yōu)勢、一產(chǎn)顯特色”策略,著力發(fā)展實(shí)體經(jīng)濟(jì),工業(yè)取得突飛猛進(jìn)的發(fā)展.逐步形成了以電子信息、機(jī)械裝備、食品制糖、鋁深加工等為主的4大支柱產(chǎn)業(yè).廣西洋浦南華糖業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如下表所示,已知.
(1)求出q的值;
(2)已知變量x,y具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價x(元)的線性回歸方程;
(3)用表示用(2)中所求的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對應(yīng)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取3個,求“好數(shù)據(jù)”個數(shù)的數(shù)學(xué)期望Eξ.
(參考公式:線性回歸方程中的最小二乘估計(jì)分別為:
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知長方形中,,為的中點(diǎn). 將沿折起,使得平面平面.
(1)求證: .
(2)點(diǎn)是線段上的一動點(diǎn),當(dāng)二面角大小為時,試確定點(diǎn)的位置.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com