精英家教網 > 高中物理 > 題目詳情
5.一根均勻的合金絲,其電阻為2Ω.當橫截面積不變,把長度增加一倍時,其電阻為4Ω;當兩端電壓增加一倍時,電阻為4Ω;當通過的電流增加一倍時,電阻為4Ω;當長度不變,橫截面積增加一倍時,其電阻為1Ω;當兩端電壓降為零時,電阻為1Ω;當合金絲被拉成長度增加一倍的均勻細絲時,電阻為8Ω.

分析 根據電阻定律R=$\frac{ρL}{S}$可知,電阻與導體的長度成正比與電截面積成反比;由于電阻是導體本身的性質,其大小與電壓和電流無關.

解答 解:根據電阻定律可知,當截面積不變,長度增加一倍時,電阻變?yōu)樵瓉淼?倍,故電阻為4Ω;
增大電壓和電流時電阻不變,故電阻仍為4Ω;
當截面積增加一倍時,導體電阻減為原來的一半,故電阻變?yōu)?Ω;電壓為零時,電阻仍為1Ω;
當長度增加一倍時,截面積變成為原來一半,則可知,電阻變?yōu)樵瓉淼?倍,故電阻為8Ω;
故答案為:4,4,4,1,1,8

點評 本題考查電阻定律的應用,要注意明確電阻與電壓和電流無關,只與導體的長度、截面積以及材料有關.

練習冊系列答案
相關習題

科目:高中物理 來源: 題型:計算題

15.探月飛船“嫦娥三號”已成功在月球表面著陸,已知月球的質量約為地球質量的$\frac{1}{81}$,月球的半徑約為地球半徑的$\frac{1}{4}$,地球的第一宇宙速度為7.9km/s,在地面上的發(fā)射速度為第一宇宙速度的$\sqrt{2}$倍時,物體將脫離地球的引力.
(1)求月球的第一宇宙速度.
(2)類比法是科學研究的重要方法之一,如果把月球與地球相類比的話,則返回式飛船“嫦娥三號”在月球表面的起飛速度至少多大才能離開月球返回地球?

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

16.下列說法中正確的是( 。
A.熱量可以自發(fā)地從低溫物體傳給高溫物體
B.內能不能轉化為動能
C.摩擦生熱是動能向內能的轉化
D.熱機的效率最多可以達到100%

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

13.三種介質I、II、III的折射率分別為n1、n2和n3,且n1>n2>n3,則下列說法正確的是( 。
A.光線由介質I 入射II有可能發(fā)生全反射
B.光線由介質I 入射III有可能發(fā)生全反射
C.光線由介質III入射I有可能發(fā)生全反射
D.光線由介質II入射I有可能發(fā)生全反射

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

20.放在光滑水平面上的A、B兩小車中間夾了一壓縮輕質彈簧,用兩手分別控制小車處于靜止狀態(tài),下面說法中正確的是(  )
A.兩手同時放開后,兩車的總動量為零
B.先放開右手,后放開左手,兩車的總動量向右
C.先放開左手,后放開右手,兩車的總動量向右
D.兩手同時放開,兩車總動量守恒;兩手放開有先后,兩車總動量一定不為零

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

10.一個線圈,接通電路時,通過它的電流變化率為10A/s,產生的自感電動勢為2.0V;切斷電路時,電流變化率為5.0×103A/s,產生的自感電動勢是1.0×103V,這線圈的自感系數是0.2H.

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

17.關于巴耳末公式$\frac{1}{λ}$=R($\frac{1}{{2}^{2}}$-$\frac{1}{{n}^{2}}$)的理解,下列說法錯誤的是( 。
A.所有氫原子光譜的波長都可由巴耳末公式求出
B.公式中n可取任意值,故氫原子光譜是連續(xù)譜
C.公式中n只能取不小于3的整數值,故氫原子光譜是線狀譜
D.公式不但適用于氫原子光譜的分析,也適用于其他原子光譜的分析

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

14.關于行星繞太陽運動,根據開普勒第三定律$\frac{{a}^{3}}{{T}^{2}}$=k,下列說法中正確的有( 。
A.k是一個僅與中心天體有關的常量
B.T表示行星的公轉周期
C.若地球繞太陽運轉的半長軸為a1,周期為T1,月亮繞地球運轉的半長軸為a2,周期為T2,由開普勒第三定律可得$\frac{{{a}_{1}}^{3}}{{{T}_{1}}^{2}}$=$\frac{{{a}_{2}}^{3}}{{{T}_{2}}^{2}}$
D.離太陽越近的行星的運動周期越短

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

14.如圖所示,AC和BC兩輕繩共同懸掛一質量為m的物體,若保持AC繩的方向不變,AC與豎直方向的夾角為60°,改變BC繩的方向,試求:
(1)物體能達到平衡時,θ角的取值范圍.
(2)θ在0~90°的范圍內,求BC繩上拉力的最大值和最小值.

查看答案和解析>>

同步練習冊答案