分析 (1)根據(jù)題意可明確粒子在磁場(chǎng)中轉(zhuǎn)動(dòng)的軌跡,作出幾何關(guān)系求出半徑,再根據(jù)洛倫茲力充當(dāng)向心力即可求得粒子的速度;
(2)先作出粒子運(yùn)動(dòng)的軌跡,根據(jù)幾何關(guān)系求出粒子能從左邊界射出時(shí)臨界情況的軌道半徑,根據(jù)洛倫茲力提供向心力公式即可求解最大速度;洛倫茲力提供向心力公式即可求解最大速度;
(3)根據(jù)洛倫茲力充當(dāng)向心力可求出軌跡半徑,畫出軌跡,由幾何知識(shí)求粒子能打到CD邊界的范圍.
解答 解:(1)如圖所示,要使粒子垂直CD邊離開,運(yùn)動(dòng)軌跡如圖所示,則根據(jù)幾何關(guān)系可知,
R=$\fracisy82sy{sin60°}$=$\fracc6gsqym{\frac{\sqrt{3}}{2}}$=$\frac{2\sqrt{3}d}{3}$;
則由牛頓第二定律可知:
Bqv=m$\frac{{v}^{2}}{R}$
解得:v=$\frac{BqR}{m}$=$\frac{2\sqrt{3}Bqd}{3m}$;
(2)粒子能從左邊界射出,臨界情況有:
R'+R'cos30°=d
Bqv=m$\frac{{v}^{2}}{R}$
v=$\frac{Bqd}{m(1+cos30°)}$=$\frac{2(2-\sqrt{3})Bqd}{m}$;
(3)由Bqv=m$\frac{{v}^{2}}{R}$可得,粒子在磁場(chǎng)中的轉(zhuǎn)動(dòng)半徑
R=$\frac{mv}{Bq}$=$\frac{m\frac{2qdB}{m}}{Bq}$=2d;
則粒子在磁場(chǎng)中的運(yùn)動(dòng)軌跡如圖所示,
由幾何關(guān)系可得在CD上形成的長度為:
l=2×2dcos30°=2$\sqrt{3}$d
答:
(1)若帶電粒子能垂直CD邊界飛出磁場(chǎng),粒子的速度為$\frac{2\sqrt{3}Bqd}{3m}$
(2)帶電粒子能從AB邊界飛出的最大速度為$\frac{2(2-\sqrt{3})Bqd}{m}$
(3)若帶電粒子的速度是$\frac{2qdB}{m}$,并可以從Q點(diǎn)沿紙面各個(gè)方向射入磁場(chǎng),則粒子能打到CD邊界的范圍為2$\sqrt{3}$d.
點(diǎn)評(píng) 本題考查帶電粒子在磁場(chǎng)中運(yùn)動(dòng),帶電粒子在磁場(chǎng)中的運(yùn)動(dòng)要把握其運(yùn)動(dòng)規(guī)律,在磁場(chǎng)中要注意找出相應(yīng)的幾何關(guān)系,從而確定圓心和半徑,畫出運(yùn)動(dòng)軌跡是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中物理 來源: 題型:選擇題
A. | $\frac{2{π}^{2}{R}^{2}}{ω{v}^{2}}$ | B. | $\frac{2π{ω}^{2}{R}^{3}}{{v}^{3}}$ | C. | $\frac{2π}{ω}$ | D. | $\frac{4{π}^{3}{R}^{3}}{{v}^{3}}$ |
查看答案和解析>>
科目:高中物理 來源: 題型:多選題
A. | 恒定拉力大小為40.0N | |
B. | 球動(dòng)能EK=3.0J時(shí)的重力勢(shì)能可能是l2.0J | |
C. | 拉力作用過程球動(dòng)能增加了15.0J | |
D. | 球動(dòng)能EK=3.0J時(shí)的重力勢(shì)能可能是9.0J |
查看答案和解析>>
科目:高中物理 來源: 題型:實(shí)驗(yàn)題
查看答案和解析>>
科目:高中物理 來源: 題型:計(jì)算題
查看答案和解析>>
科目:高中物理 來源: 題型:選擇題
A. | 1:9 | B. | 1:5 | C. | 1:4 | D. | 1:3 |
查看答案和解析>>
科目:高中物理 來源: 題型:計(jì)算題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com