如圖所示,空間等間距分布著水平方向的條形勻強磁場,豎直方向磁場區(qū)域足夠長,磁感應(yīng)強度B=1T,每一條形磁場區(qū)域的寬度及相鄰條形磁場區(qū)域的間距均為d=0.5 m,現(xiàn)有一邊長L= 0.2m、質(zhì)量m=0.1kg、電阻R=0.1Ω的正方形線框MNOP以=7m/s的初速從左側(cè)磁場邊緣水平進入磁場,求:

(1)線框MN邊剛進入磁場時受到安培力的大小F;
(2)線框從開始進入磁場到豎直下落的過程中產(chǎn)生的焦耳熱Q;
(3)線框能穿過的完整條形磁場區(qū)域的個數(shù)n。

(1)2.8N;(2)2.45J;(3)4

解析試題分析:(1)線框MN邊剛開始進入磁場區(qū)域時
 ①
 ②
 ③
由①②③并代入數(shù)據(jù)得:
(2)設(shè)線框水平速度減為零時,下落高落為H,此時速度為
由能量守恒可得:  ④
根據(jù)自由落體規(guī)律有:   ⑤
由④⑤得:               
(3)設(shè)線框水平切割速度為時有:
   ⑥
 ⑦
 ⑧
 ⑨
由⑥⑦⑧⑨得: ⑩
即:
可有: (11)
 (12)
由(11)(12)并代入數(shù)據(jù)得: (13)
所以可穿過4個完整條形磁場區(qū)域
考點:法拉第電磁感應(yīng)定律;牛頓第二定律;能量守恒定律。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:計算題

(12分)如圖所示,光滑水平面AB與豎直面的半圓形導(dǎo)軌在B點銜接,導(dǎo)軌半徑R,一個質(zhì)量為m的物塊靜止在A處壓縮彈簧,把物塊釋放,在彈力的作用下獲得一個向右的速度,當(dāng)它經(jīng)過B點進入導(dǎo)軌瞬間對導(dǎo)軌的壓力為其重力的7倍,之后向上運動恰能完成半圓周運動到達C點,不計空氣阻力,g取,求:

(1)彈簧對物塊的彈力做的功;
(2)物塊從B至C克服摩擦阻力所做的功;
(3)物塊離開C點后落回水平面時動能的大小。

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

(22分)質(zhì)量為m的飛機模型,在水平跑道上由靜止勻加速起飛,假定起飛過程中受到的平均阻力恒為飛機所受重力的k倍,發(fā)動機牽引力恒為F,離開地面起飛時的速度為v,重力加速度為g。求:

(1)飛機模型的起飛距離(離開地面前的運動距離)
(2)若飛機起飛利用電磁彈射技術(shù),將大大縮短起飛距離。圖甲為電磁彈射裝置的原理簡化示意圖,與飛機連接的金屬塊(圖中未畫出)可以沿兩根相互靠近且平行的導(dǎo)軌無摩擦滑動。使用前先給電容為C的大容量電容器充電,彈射飛機時,電容器釋放儲存電能所產(chǎn)生的強大電流從一根導(dǎo)軌流入,經(jīng)過金屬塊,再從另一根導(dǎo)軌流出;導(dǎo)軌中的強大電流形成的磁場使金屬塊受磁場力而加速,從而推動飛機起飛。
①在圖乙中畫出電源向電容器充電過程中電容器兩極板間電壓u與極板上所帶電荷量q的圖象,在此基礎(chǔ)上求電容器充電電壓為U0時儲存的電能;
②當(dāng)電容器充電電壓為Um時彈射上述飛機模型,在電磁彈射裝置與飛機發(fā)動機同時工作的情況下,可使起飛距離縮短為x。若金屬塊推動飛機所做的功與電容器釋放電能的比值為η,飛機發(fā)動的牽引力F及受到的平均阻力不變。求完成此次彈射后電容器剩余的電能。

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

如圖所示,將質(zhì)量m=0.1kg的圓環(huán)套在固定的水平直桿上。環(huán)的直徑略大于桿的截面直徑。環(huán)與桿間動摩擦因數(shù)m=0.8。對環(huán)施加一位于豎直平面內(nèi)斜向上,與桿夾角q=53°的拉力F,使圓環(huán)以a=4.4m/s2的加速度沿桿運動,求F的大小。(取sin53°=0.8,cos53°=0.6,g=10m/s2)。

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

為登月探測月球,上海航天研制了“月球車”,如圖甲所示.某探究性學(xué)習(xí)小組對“月球車”的性能進行研究.他們讓“月球車”在水平地面上由靜止開始運動,并將“月球車”運動的全過程記錄下來,通過數(shù)據(jù)處理得到如圖乙所示的v-t圖象,已知0~1.5s段為過原點的傾斜直線;1.5~10 s段內(nèi)“月球車”牽引力的功率保持不變,且P=1.2 kW,在10 s末停止遙控,讓“月球車”自由滑行,已知“月球車”質(zhì)量m=100 kg,整個過程中“月球車”受到的阻力Ff大小不變.

(1)求“月球車”所受阻力Ff的大小和勻加速過程中的牽引力F
(2)求“月球車”變加速過程的位移x.   

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

過山車是游樂場中常見的設(shè)施。如圖是一種過山車的簡易模型,它由水平軌道和在豎直平面內(nèi)半徑R= 2.0m的圓形軌道組成,B、C分別是圓形軌道的最低點和最高點。一個質(zhì)量為m=1.0kg的小滑塊(可視為質(zhì)點),從軌道的左側(cè)A點以v0= 12m/s的初速度沿軌道向右運動,A、B間距L= 11.5m。小滑塊與水平軌道間的動摩擦因數(shù)。圓形軌道是光滑的,水平軌道足夠長。取重力加速度g=10m/s2。求:

(1)滑塊經(jīng)過B點時的速度大小;
(2)滑塊經(jīng)過C點時受到軌道的作用力大小F;
(3)滑塊最終停留點D(圖中未畫出)與起點A的距離d。

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

為減少煙塵排放對空氣的污染,某同學(xué)設(shè)計了一個如圖所示的靜電除塵器,該除塵器的上下底面是邊長為L=0.20m的正方形金屬板,前后面是絕緣的透明有機玻璃,左右面是高h=0.10m的通道口。使用時底面水平放置,兩金屬板連接到U=2000V的高壓電源兩極(下板接負極),于是在兩金屬板間產(chǎn)生一個勻強電場(忽略邊緣效應(yīng))。均勻分布的帶電煙塵顆粒以v=10m/s的水平速度從左向右通過除塵器,已知每個顆粒帶電荷量q=+2.0×10-17C,質(zhì)量m=1.0×10-15kg,不考慮煙塵顆粒之間的相互作用和空氣阻力,并忽略煙塵顆粒所受重力。在閉合開關(guān)后:

(1)求煙塵顆粒在通道內(nèi)運動時加速度的大小和方向;
(2)求除塵過程中煙塵顆粒在豎直方向所能偏轉(zhuǎn)的最大距離;
(3)除塵效率是衡量除塵器性能的一個重要參數(shù)。除塵效率是指一段時間內(nèi)被吸附的煙塵顆粒數(shù)量與進入除塵器煙塵顆?偭康谋戎。試求在上述情況下該除塵器的除塵效率;若用該除塵器對上述比荷的顆粒進行除塵,試通過分析給出在保持除塵器通道大小不變的前提下,提高其除塵效率的方法。

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

某興趣小組設(shè)計了如圖所示的玩具軌道,它由細圓管彎成,固定在豎直平面內(nèi)。左右兩側(cè)的斜直管道PA與PB的傾角、高度、粗糙程度完全相同,管口A、B兩處均用很小的光滑小圓弧管連接(管口處切線豎直),管口到底端的高度H1=0.4m。中間“8”字型光滑細管道的圓半徑R=10cm(圓半徑比細管的內(nèi)徑大得多),并與兩斜直管道的底端平滑連接。一質(zhì)量m=0.5kg的小滑塊從管口 A的正上方H2處自由下落,第一次到達最低點P的速度大小為10m/s.此后小滑塊經(jīng)“8”字型和PB管道運動到B處豎直向上飛出,然后又再次落回,如此反復(fù)。小滑塊視為質(zhì)點,忽略小滑塊進入管口時因碰撞造成的能量損失,不計空氣阻力,且取g=10m/s2。求:

(1) 滑塊第一次由A滑到P的過程中,克服摩擦力做功;
(2)滑塊第一次到達“8”字型管道頂端時對管道的作用力;
(3)滑塊第一次離開管口B后上升的高度;
(4)滑塊能沖出槽口的次數(shù)。

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

(15分)直升機因為有許多其他飛行器難以辦到或不可能辦到的優(yōu)勢(如可以垂直起飛降落,不用大面積機場),所以受到廣泛應(yīng)用。主要用于觀光旅游、火災(zāi)救援、海上急救、緝私緝毒、消防、商務(wù)運輸、醫(yī)療救助、通信以及噴灑農(nóng)藥殺蟲劑消滅害蟲、探測資等國民經(jīng)濟的各個部門。下圖是在某次救災(zāi)中直升機沿水平方向做勻加速運動時的情境,懸掛箱子的繩子與豎直方向的夾角保持為。此時箱子距水平地面高20m(sin="0.174," cos="0.984," tan=0.176,g取10m/s2)求:

(1)直升機的加速度a的大;
(2)某時刻直升機上儀表顯示飛行速度為100km/h。若此時有一小物體從箱子中掉落,不計空氣阻力,物體落在水平地面時距直升機的水平距離d的大小。

查看答案和解析>>

同步練習(xí)冊答案