11.如圖所示,質(zhì)量為M長度足夠長木板靜止在光滑水平面上.質(zhì)量為m 的木塊(可視為質(zhì)點)以水平向右的初速度v0滑上長木板,最終與長木板保持相對靜止.求:
①木塊最終的速度v;
②長木板和木塊組成的系統(tǒng)損失的機械能△E.

分析 (1)木塊與木板組成的系統(tǒng)動量守恒,應(yīng)用動量守恒定律可以求出木塊的最終速度;
(2)對系統(tǒng)應(yīng)用能量守恒定律可以求出產(chǎn)生的熱量,即為系統(tǒng)損失的機械能.

解答 解:(1)木塊與木板組成的系統(tǒng)動量守恒,以向右為正方向,
由動量守恒定律得:mv0=(M+m)v,解得:v=$\frac{m{v}_{0}}{M+M}$;
(2)由能量守恒定律得:$\frac{1}{2}$mv02=Q+$\frac{1}{2}$(M+m)v2,
解得:Q=$\frac{Mm{{v}_{0}}^{2}}{2(M+m)}$
即系統(tǒng)損失的機械能為$\frac{Mm{{v}_{0}}^{2}}{2(M+m)}$.
答:(1)木塊最終的速度v為$\frac{m{v}_{0}}{M+M}$;
(2)長木板和木塊組成的系統(tǒng)損失的機械能△E為$\frac{Mm{{v}_{0}}^{2}}{2(M+m)}$.

點評 本題考查了動量守恒定律與能量守恒定律的應(yīng)用,分析清楚物體運動過程,應(yīng)用動量守恒定律與能量守恒定律可以解題.

練習冊系列答案
相關(guān)習題

科目:高中物理 來源: 題型:選擇題

1.甲和乙兩個物體在同一直線上運動,它們的速度-時間圖象分別如圖中的a和b所示.在t1時刻( 。
A.它們的運動方向相同B.它們的運動方向相反
C.a的速度比b的速度大D.a、b的加速度方向相同

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

2.在做“研究勻變速直線運動”實驗中,打點計時器打出的一條紙帶中的某段如圖所示,若A、B、C …點間的時間間隔均為0.10s,從圖中給定的長度,求打下C點時小車的速度大小是1.1m/s,小車的加速度大小是4.0m/s2

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

19.庫侖定律的表達式F=$\frac{kQq}{{r}^{2}}$;電荷所帶的電荷量必定是元電荷整數(shù)倍.

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

6.如圖中所展示的是下列哪種情況的電場線( 。
A.正點電荷B.負點電荷
C.等量異種點電荷D.等量同種正點電荷

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

16.如圖所示,水平放置的平行板電容器兩極板間距為d,帶負電的微粒質(zhì)量為m、帶電量為q,它從上極板的邊緣以初速度v0射入,沿直線從下極板N的邊緣射出,則(  )
A.微粒的加速度不為零B.微粒的電勢能減少了mgd
C.兩極板的電勢差為$\frac{mgd}{q}$D.M板的電勢低于N板的電勢

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

3.做“探索彈力與彈簧伸長量關(guān)系”的實驗步驟如下:
A.以彈簧伸長量為橫坐標,以彈力為縱坐標,描出各組數(shù)據(jù)(x,F(xiàn))對應(yīng)的點,并用平滑的曲線連接起來
B.記下彈簧不掛鉤碼時.其下端在刻度尺上的刻度L
C.將鐵架臺固定在桌子上(也可在橫梁的另一端掛上一定的配重),并將彈簧的一端系于橫梁上,在彈簧附近豎直固定一刻度尺
D.依次在彈簧下端掛上2個、3個、4個…鉤碼,并分別記下鉤碼靜止時彈簧下端所對應(yīng)的刻度,并記錄在表格內(nèi),然后取下鉤碼
E.以彈簧伸長量為自變量,寫出彈力與伸長量的關(guān)系式.首先嘗試寫成一次函數(shù),不行再寫成二次函數(shù)
F.解釋函數(shù)表達式中常數(shù)的物理意義
G.整理儀器
①請將以上步驟按操作的先后順序排列出來,為:CBDAEFG;
②某同學(xué)在做研究彈簧的形變與外力的關(guān)系實驗時,作出外力F與彈簧總長度L的關(guān)系圖線如圖1所示.該實驗始終在彈簧的彈性限度內(nèi)進行.由圖2可知:該彈簧的自然長度為10cm;該彈簧的勁度系數(shù)為50.0N/m.(后一空保留三位有效數(shù)字)

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

20.在兩個相同的水滴上都有一個多余的電子e,如果靜電排斥力和萬有引力平衡,試求水滴的半徑.(已知ρ為水滴的密度,G為萬有引力常量,k為靜電力常量)

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

9.如圖所示,相距為L的平行金屬導(dǎo)軌ab、cd與水平面成θ角放置,導(dǎo)軌與阻值均為R的兩定值電阻R1、R2相連,磁感應(yīng)強度為B的勻強磁場垂直穿過導(dǎo)軌平面.有一質(zhì)量為m、阻值也為R的導(dǎo)體棒MN,以速度v沿導(dǎo)軌勻速下滑,它與導(dǎo)軌之間的動摩擦因數(shù)為μ,忽略感應(yīng)電流之間的相互作用,則(  )
A.導(dǎo)體棒兩端電壓為$\frac{mgR(sinθ-μcosθ)}{2BL}$
B.t時間內(nèi)通過導(dǎo)體棒的電荷量為$\frac{mgt(sinθ-μcosθ)}{BL}$
C.導(dǎo)體棒下滑的速度大小為$\frac{mgR(sinθ-μcosθ)}{{B}^{2}{L}^{2}}$
D.電阻R1消耗的熱功率為$\frac{1}{4}$mgv(sinθ-μcosθ)

查看答案和解析>>

同步練習冊答案