分析 (1)對D到P為研究過程,運用動能定理求出DM間的距離.
(2)對D到A為研究過程,運用動能定理求出A點的速度,根據(jù)牛頓第二定律,沿半徑方向上合力提供向心力,求出彎桿對小環(huán)作用力的大。
(3)需討論摩擦力的大小與電場力的大小關(guān)系,若摩擦力大于等于電場力,則小環(huán)將停在PQ上某處;若摩擦力小于電場力,則環(huán)最終在DP間往復(fù)運動.根據(jù)動能定理求出摩擦力做的功.
解答 解:(1)小環(huán)剛好能到達P點,說明小環(huán)在P點的速度 vP=0
由動能定理得:
qEx0-mg•2R=0
又qE=$\frac{3}{4}$mg
解得:x0=$\frac{8}{3}$R
(2)在小環(huán)由D點到A點的過程中,由動能定理得:
qE(x0+R)-mgR=$\frac{1}{2}m{v}_{A}^{2}$
在A點,由牛頓第二定律得:
NA-qvAB-qE=m$\frac{{v}_{A}^{2}}{R}$
解得:NA=$\frac{17}{4}$mg+$\frac{qB\sqrt{14gR}}{2}$
(3)若μmg大于或等于qE,即μ大于或等于$\frac{3}{4}$,則小環(huán)將停在PQ上某處,設(shè)小環(huán)停的位置離P點的距離為x.
由能量守恒定律得:
qE(4R-x)-2mgR-μmgx=0
解得:x=$\frac{4R}{4μ+3}$
則克服摩擦力做功為:Wf=$\frac{4μ}{4μ+3}$mgR
若μmg小于qE,即μ小于$\frac{3}{4}$,小環(huán)速度為零后將反向運動,在導(dǎo)軌上往復(fù)數(shù)次,直至到達P點時的速度為零,(因摩擦力作用,小環(huán)的動能和重力勢能之和會逐漸減小,但小環(huán)不會靜止在P點,而是在導(dǎo)軌DMAP處往復(fù)運動,則有:
Wf=4qER-2mgR=mgR
答:(1)DM間的距離x0是$\frac{8}{3}$R.
(2)上述過程中小環(huán)第一次通過與O等高的A點時彎桿對小環(huán)作用力的大小是$\frac{17}{4}$mg+$\frac{qB\sqrt{14gR}}{2}$.
(3)小環(huán)在整個運動過程中克服摩擦力所做的功為$\frac{4μ}{4μ+3}$mgR或mgR.
點評 本題運用動能定理解題時,需合適地選取研究的過程,根據(jù)動能定理列出表達式求解,知道洛倫茲力的表達式,要注意做功的正負.
科目:高中物理 來源: 題型:選擇題
A. | 合力F必大于F1或F2 | |
B. | 若用兩只彈簧秤拉時作出的合力的圖示F與用一只彈簧秤拉時拉力的圖示F′不完全重合,說明力的合成的平行四邊形定則不一定是普遍成立的 | |
C. | 若F1和F2方向不變,而大小各增加1N,則合力F的方向不變,大小也增加1N | |
D. | O點位置不變,合力不變 |
查看答案和解析>>
科目:高中物理 來源: 題型:解答題
查看答案和解析>>
科目:高中物理 來源: 題型:解答題
查看答案和解析>>
科目:高中物理 來源: 題型:多選題
A. | 水銀上升的條件是BU>ρrgL | |
B. | 若滿足上升條件,水銀從初始位置上升的高度是$\frac{BUh}{ρrgL}$ | |
C. | 若滿足上升條件,水銀從初始位置上升的高度是$\frac{BU}{ρrg}$ | |
D. | 水銀上升的高度與槽前后面間的距離有關(guān) |
查看答案和解析>>
科目:高中物理 來源: 題型:解答題
查看答案和解析>>
科目:高中物理 來源: 題型:多選題
A. | vb=$\sqrt{20}$m/s | B. | vc=4m/s | C. | Sde=2m | D. | tde=2s |
查看答案和解析>>
科目:高中物理 來源: 題型:解答題
查看答案和解析>>
科目:高中物理 來源: 題型:選擇題
A. | 滑塊一定受到四個力作用 | |
B. | 彈簧不可能處于拉伸狀態(tài) | |
C. | 斜面對滑塊的支持力大小可能為零 | |
D. | 斜面對滑塊一定有沿斜面向上的摩擦力,且大小為$\frac{1}{2}$mg |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com