北京市人大附中2007屆摸底考試數(shù)學(xué)試卷(理科)
命題人:羅 霞
本試卷分第I卷(選擇題)和第II卷(非選擇題)兩部分,第I卷 1至2頁(yè),第II卷3至8頁(yè),共150分,考試時(shí)間120分鐘.
第I卷(選擇題共40分)
注意事項(xiàng): 1.答第I卷前,考生務(wù)必將自己的姓名、班級(jí)、學(xué)號(hào)寫(xiě)在答題卡上;
2.每小題選出答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào);
3.考試結(jié)束,將答題卡和第II卷3至8頁(yè)試卷一并交回.
一、本大題共8小題,每小題5分,共40分.在每小題列出的四個(gè)選項(xiàng)中,選出符合題目要求的一項(xiàng).
1.設(shè)全集U=R,是 ( )
A. B. C. D.
2.在三角形ABC中 ( )
A. 必要不充分條件 B. 充分不必要條件 C. 充要條件 D. 既不充分又不必要條件
3.若函數(shù) ( 。
A. B. C.3 D.4
4.給出下面的四個(gè)命題:
(1)兩個(gè)側(cè)面為矩形的四棱柱是直四棱柱;
(2)平行六面體
(3)若
(4).
其中正確的命題的個(gè)數(shù)是 ( )
A. 1
B.
5.若,則實(shí)數(shù)k的取值范圍是 ( )
A. 0<k< B . k< C .|k|< D.<k<1
6.設(shè)函數(shù)的反函數(shù)為,將的圖像向左平移兩個(gè)單位,再關(guān)于軸對(duì)稱后所得到的函數(shù)的反函數(shù)是 ( )
A . y= B. y= C. y= D. y=
7.從集合{1,2,3…,11}中任選兩個(gè)元素作為橢圓方程中的m和n,則能組成落在矩形區(qū)域內(nèi)的橢圓個(gè)數(shù)為 ( )
A.43 B.
8.某種游戲中,黑、黃兩個(gè)“電子狗”從棱長(zhǎng)為1的正方體ABCD-A1B
A.0 B
二、填空題:本大題共6小題,每小題5分,共30分.把最簡(jiǎn)答案填在題中橫線上.
9.某公司生產(chǎn)三種型號(hào)的轎車(chē),產(chǎn)量分別為1 200輛,6 000輛和2 000輛.為檢驗(yàn)該公司的產(chǎn)品質(zhì)量,現(xiàn)用分層抽樣方法抽取46輛進(jìn)行檢驗(yàn),這三種型號(hào)的轎車(chē)依次應(yīng)抽取____________,_______________,____________輛.
10.設(shè)函數(shù),若要使得函數(shù)在處連續(xù),則應(yīng) .
11.在一個(gè)二面角的一個(gè)面內(nèi)有一點(diǎn),它到棱的距離等于它到另一個(gè)面的距離的2倍,則二面角的度數(shù)為 .
12. 設(shè)的展開(kāi)式的各項(xiàng)系數(shù)之和為M,且二項(xiàng)式系數(shù)之和為N,M―N=992,則展開(kāi)式中x2項(xiàng)的系數(shù)為 .
13.一個(gè)四面體的所有棱長(zhǎng)都為,四個(gè)頂點(diǎn)在同一球面上,則此球的表面積為 .
14.讀下列命題,請(qǐng)把正確命題的序號(hào)都填在橫線上 .
①已知命題p與命題q,若p是q的充分不必要條件,則是的充分不必要條件;
②若函數(shù)是偶函數(shù),則函數(shù)的圖象關(guān)于直線對(duì)稱;
③函數(shù)的圖象關(guān)于點(diǎn)(-1,-2)成中心對(duì)稱;
④已知是定義在實(shí)數(shù)集上的函數(shù),且,若,則 =.
三、解答題:本大題共6小題,共80分.解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.
15. (本題滿分12分)
已知集合,并且滿足
求實(shí)數(shù)的取值范圍.
16.(本小題滿分13分)
袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取……取球后不放回,直到兩人中有一人取到白球時(shí)終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的,用表示取球終止所需要的取球次數(shù).
(I)求袋中所有的白球的個(gè)數(shù);
(II)求隨機(jī)變量的概率分布;
(III)求甲取到白球的概率.
17.(本題滿分13分)
設(shè)函數(shù)=的圖象關(guān)于直線-=0對(duì)稱.
(1)求的值;
(2)判斷并證明函數(shù)在區(qū)間(1,+∞)上的單調(diào)性;
(3)若直線=(∈R)與的圖象無(wú)公共點(diǎn),且<2+,求實(shí)數(shù)的取值范圍.
18. (本小題滿分14分)
如圖,四棱錐中,底面,且,與底面
成角,點(diǎn)分別是的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)當(dāng)為何值時(shí),,并請(qǐng)證明你的結(jié)論.
19.(本小題滿分14分)
若定義在區(qū)間D上的函數(shù)對(duì)于區(qū)間D上的任意兩個(gè)值總有以下不等式成立,則稱函數(shù)為區(qū)間D上的凸函數(shù) .
(1)證明:定義在R上的二次函數(shù)是凸函數(shù);
(2)設(shè),并且時(shí),恒成立,求實(shí)數(shù)的取值范圍,并判斷函數(shù)能否成為上的凸函數(shù);
(3)定義在整數(shù)集上的函數(shù)滿足:①對(duì)任意的,;②,. 試求的解析式;并判斷所求的函數(shù)是不是上的凸函數(shù)說(shuō)明理由.
已知函數(shù),并且對(duì)于任意的函數(shù)
的圖象恒經(jīng)過(guò)點(diǎn).
(1)求數(shù)列的通項(xiàng)公式;
(2)求(用表示);
(3)求證:若,則有.
一.選擇題:
題號(hào)
1
2
3
4
5
6
7
8
答案
C
A
C
B
B
A
B
D
二.填空題:
9.6、30、10; 10.?5; 11.;
12.?250; 13.; 14.③④
三.解答題:
15.解: ; ………5分
方程有非正實(shí)數(shù)根
綜上: ……………………12分16.解:(I)設(shè)袋中原有個(gè)白球,由題意知
可得或(舍去)
答:袋中原有3個(gè)白球. 。。。。。。。。4分
(II)由題意,的可能取值為1,2,3,4,5
所以的分布列為:
1
2
3
4
5
。。。。。。。。。9分
(III)因?yàn)榧紫热?所以甲只有可能在第一次,第三次和第5次取球,記”甲取到白球”為事件,則
答:甲取到白球的概率為.。。。。。。。。13分
17.解:(1)由=.=,∴=1;。。。。。。。。。4分
(2)任取、∈(1,+∞),且設(shè)<,則:
-=>0,
∴=在(1,+∞)上是單調(diào)遞減函數(shù);。。。。。。。。。8分
(3)當(dāng)直線=(∈R)與的圖象無(wú)公共點(diǎn)時(shí),=1,
∴<2+=4=,|-2|+>2,
得:>或<.。。。。。。。。13分
18.(Ⅰ)證明:∵底面,底面, ∴
又∵且平面,平面,,
∴平面;3分
(Ⅱ)解:∵點(diǎn)分別是的中點(diǎn),
∴,由(Ⅰ)知平面,
∴平面,
∴,,
∴為二面角的平面角,
∵底面,∴與底面所成的角即為,
∴=,∵為直角三角形斜邊的中點(diǎn),
∴為等腰三角形,且,∴;
(Ⅲ)過(guò)點(diǎn)作交于點(diǎn),∵底面,
∴底面,為直線在底面上的射影,
要,由三垂線定理的逆定理有要 ,
設(shè),則由得,
又∴在直角三角形中,,
∴,
∵ ∴,,
在直角三角形中,,
,即時(shí),.
(Ⅲ)以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖的直角坐標(biāo)系,設(shè),則,,設(shè),則
則,,,
,時(shí)時(shí),.
19 證明:(1)對(duì)任意x1, x2∈R, 當(dāng) a0,
有 = =……(3分)
∴當(dāng)時(shí),,即
當(dāng)時(shí),函數(shù)f(x)是凸函數(shù). ……(4分)
(2) 當(dāng)x=0時(shí), 對(duì)于a∈R,有f(x)≤1恒成立;當(dāng)x∈(0, 1]時(shí), 要f(x)≤1恒成立
即, ∴ 恒成立,∵ x∈(0, 1], ∴ ≥1, 當(dāng)=1時(shí), 取到最小值為0,∴ a≤0, 又a≠0,∴ a的取值范圍是.
由此可知,滿足條件的實(shí)數(shù)a的取值恒為負(fù)數(shù),由(1)可知函數(shù)f(x)是凸函數(shù)………10分
(3)令則,∵,∴,……………..(11)分
令,則,故;
若,則
;,……………..(12)分
若,則 ∴;∴時(shí),.
綜上所述,對(duì)任意的,都有;……………..(13)分
所以,不是R上的凸函數(shù). ……………..(14)分
對(duì)任意,有,
所以,不是上的凸函數(shù). ……………..(14)分
20. 解:(1)設(shè)數(shù)列的前項(xiàng)和為,則
……….4分
(2)為偶數(shù)時(shí),
為奇數(shù)時(shí),
………9分
(3)方法1、因?yàn)?sub>所以
當(dāng),時(shí),,時(shí)
又由,兩式相減得
所以若,則有………..14分
方法2、由,兩式相減得
………..11分
所以要證明,只要證明
或①由:
所以…………………14分
或②由:
…………………14分
數(shù)學(xué)歸納法:①當(dāng)
當(dāng)
②當(dāng)
當(dāng)
綜上①②知若,則有.
所以,若,則有.。。。。。。。。。14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com