③在區(qū)間[-2.2]上任意取兩個(gè)實(shí)數(shù)a.b.則關(guān)系x的二次方程x2+2ax-b2+1=0的兩根都為實(shí)數(shù)的概率為, 查看更多

 

題目列表(包括答案和解析)

已知在區(qū)間[-1,1]上是增函數(shù).

(1)求實(shí)數(shù)a的取值范圍;

(2)記(1)中實(shí)數(shù)a的范圍為集合A,且設(shè)關(guān)于x的方程的兩個(gè)非零實(shí)根為x1,x2

①求|x1-x2|的最大值;

②試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1>|x1-x2|對(duì)于任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數(shù).

(1)求實(shí)數(shù)a的值組成的集合A;

(2)設(shè)關(guān)于x的方程f(x)=的兩個(gè)非零實(shí)根為x1、x2.試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知f(x)=(x∈R),在區(qū)間[-1,1]上是增函數(shù).

(1)求實(shí)數(shù)a的值組成的集合A;

(2)設(shè)關(guān)于x的方程f(x)=的兩個(gè)非零實(shí)根為x1、x2,試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

設(shè)命題p:f(x)=在區(qū)間(1,+∞)上是減函數(shù);命題q:x1,x2是方程x2-ax-2=0的兩個(gè)實(shí)根,且不等式m2+5m-3≥|x1-x2|對(duì)任意的實(shí)數(shù)a∈[-1,1]恒成立.若p∧q為真,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

設(shè)命題pf(x)=在區(qū)間(1,+∞)上是減函數(shù);命題qx1,x2是方程x2ax-2=0的兩個(gè)實(shí)根,且不等式m2+5m-3≥|x1x2|對(duì)任意的實(shí)數(shù)a∈[-1,1]恒成立.若pq為真,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

一、選擇題:

1.C 2.B 3.A 4.D 5.C 6.B 7.A 8.C 9.A 10.D 11.D  12.B

二、填空題:

13.{―1} 14.0  15.45°  16.8/3   17.4  

18.如2,6,18,54等  19.(0,3/2] 20 . 

21. 22.2y-3x+3=0 23.I ≤98,或I<100等

24.(1,8.2) 25. 26. ①③

三、解答題:

27解:(1)由

  ,  ,   

(2)

同理:

,

    ∴0<x<

,,..

28解法一:(1)F為PA的中點(diǎn)。下面給予證明:

延長(zhǎng)DE、AB交于點(diǎn)M,由E為BC中點(diǎn),知B為AM的中點(diǎn),

連接BF,則BF∥PM,PM平面PDE,∴BF∥平面PDE。

(2)DE為正△BCD的邊BC上的中線,因此DE⊥BC,∴DE⊥AD,

又PA⊥平面ABCD,即 DE⊥PA, 所以 DE⊥平面PAD.

由此知平面PDE⊥平面PAD.

作AH⊥PD于H,則AH⊥平面PDE.

作HO⊥PM于O,

則∠AOH為所求二面角的平面角,

又在Rt∆PAD中∠PDA = 45°,PA = AD = 2,

因此AH =,又AO =,HO=      

解法二:以AD為X正半軸,AP為Z軸,建立空間坐標(biāo)系,

則F(0,0,a),B(1,,P(0,0,2),D(2,0,0),E(2,

,,令面PDE,

因?yàn)锽F∥面PDE, ∴-1+a=0, ∴a=1, ∴F(0,0,1)   

(2)作DG⊥AB,可得G(),∵PA⊥面ABCD,∴PA⊥DG,又因?yàn)锳BAP=A,

∴DG⊥平面PAB, 設(shè)平面PDE與平面PAB所成的銳二面角為,

=(,所以tan=.

29解: (1)由題意知,的可能取值為0,1,2,3,且

,,

, ,   所以的分布列為:

 

.                          

(2) 記“取出的這個(gè)球是白球”為事件,“從甲盒中任取個(gè)球”為事件,

{從甲盒中任取個(gè)球均為紅球},{從甲盒中任取個(gè)球?yàn)橐患t一白},

{從甲盒中任取個(gè)球均為白球},顯然,且彼此互斥.

 

.            

30解:(1) 當(dāng)a=1時(shí),f(x)= .

因此,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為:5x-y-8=0…3分

(2) x∈(0,2]時(shí), f(x)=

若2≤a<6,則=0在(0,2)上有根x= ,且在(0,)上

>0,在(,2)上<0, 因此, f(x)在x=處取極大值,

由于只有一個(gè)極值點(diǎn),所以極大值也是最大值. 由此得.

若a≥6,則在(0,2)上>0,因此,f(x)在x∈(0,2]時(shí)單調(diào)遞增,

∴當(dāng) x=2時(shí)f(x)最大,即2(2-a)=8∴a=0或4 ,均不合,舍去.

綜上知  a= .      

(3) x<0時(shí),f(x)= ,<0.

f(x)單調(diào)遞減,由k<0時(shí),f(k-)≤f(-)對(duì)任意的x≥0恒成立,

知:k-≥-對(duì)任意的x≥0恒成立,即對(duì)任意的x≥0

恒成立,易得 的最大值為0.   

.           

31解:(1)由,

(2) ,

所以數(shù)列是以-2為首項(xiàng),為公比的等比數(shù)列,

 ,

,

,

 (3) 假設(shè)存在整數(shù)m、n,使成立,則

因?yàn)?sub>

只要

,因此m只可能為2或3,

當(dāng)m=2時(shí),n=1顯然成立。n≥2有故不合.

當(dāng)m=3時(shí),n=1,故不合。n=2符合要求。

n≥3,故不合。

綜上可知:m=2,n=1或m=3, n=2。

32解:(1)設(shè)A、B,直線的斜率為k.則由        

得x2-4kx-4b=0 ,

         

而b>0,∴b=4. 

(2)以A、B為切點(diǎn)的拋物線的切線分別為

 ① ,   ②

①÷②得③   又代入③

即所求M點(diǎn)的軌跡方程為y=-4,

(3)假設(shè)存在直線y=a,被以AB為直徑的圓截得的弦長(zhǎng)為定值ℓ,

圓心距d=,

由ℓ為定值,所以a=-1

而當(dāng)a=-1時(shí),=-9 ,因此a=-1不合題意,舍去。

故符合條件的直線不存在。   

 


同步練習(xí)冊(cè)答案