題目列表(包括答案和解析)
n(n+1) |
2 |
n(n+1)(2n+1) |
6 |
C | m n |
n |
m |
C | m-1 n-1 |
(1+x)[1-(1+x)n] |
1-(1+x) |
(1+x)n+1-(1+x) |
x |
n2+n |
(k+1)2+(k+1) |
k2+3k+2 |
k2+4k+4 |
證明:(1)當(dāng)n=1時,顯然命題是正確的;(2)假設(shè)n=k時有<k+1,那么當(dāng)n=k+1時,=(k+1)+1,所以當(dāng)n=k+1時命題是正確的,由(1)(2)可知對于n∈N,命題都是正確的.以上證法是錯誤的,錯誤在于( )
A.當(dāng)n=1時,驗(yàn)證過程不具體
B.歸納假設(shè)的寫法不正確
C.從k到k+1的推理不嚴(yán)密
D.從k到k+1的推理過程沒有使用歸納假設(shè)
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有≤成立,求實(shí)數(shù)的最小值;
(Ⅲ)證明().
【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">
由,得
當(dāng)x變化時,,的變化情況如下表:
x |
|||
- |
0 |
+ |
|
極小值 |
因此,在處取得最小值,故由題意,所以
(2)解:當(dāng)時,取,有,故時不合題意.當(dāng)時,令,即
令,得
①當(dāng)時,,在上恒成立。因此在上單調(diào)遞減.從而對于任意的,總有,即在上恒成立,故符合題意.
②當(dāng)時,,對于,,故在上單調(diào)遞增.因此當(dāng)取時,,即不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當(dāng)n=1時,不等式左邊==右邊,所以不等式成立.
當(dāng)時,
在(2)中取,得 ,
從而
所以有
綜上,,
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com