有一段演繹推理是這樣的:“直線平行于平面.則此直線平行于平面內(nèi)的所有直線,已知直線平面.直線平面.直線平面.則直線直線 .結(jié)論顯然是錯(cuò)誤的.這是因?yàn)? ) A.大前提錯(cuò)誤 B.推理形式錯(cuò)誤 C.小前提錯(cuò)誤 D.非以上錯(cuò)誤 查看更多

 

題目列表(包括答案和解析)

4、有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線b?平面α,直線a?平面α,直線b∥平面α,則直線b∥直線a”的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)椋ā 。?/div>

查看答案和解析>>

6、有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線b⊆平面α,直線α?平面α,直線b∥平面α,則直線b∥直線a”的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)?div id="zp9tpt3" class="quizPutTag">大前提錯(cuò)誤

查看答案和解析>>

有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線b?平面α,直線a?平面α,直線b∥平面α,則直線b∥直線α”的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)?!--BA-->
 

①大前提錯(cuò)誤    
②小前提錯(cuò)誤      
③推理形式錯(cuò)誤       
④非以上錯(cuò)誤.

查看答案和解析>>

有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線平面,直線平面,直線∥平面,則直線∥直線”的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)椋?nbsp;  )

A.大前提錯(cuò)誤B.小前提錯(cuò)誤
C.推理形式錯(cuò)誤D.非以上錯(cuò)誤

查看答案和解析>>

有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線平面,直線平面,直線∥平面,則直線∥直線”的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)?nbsp;(  )

A.大前提錯(cuò)誤       B.小前提錯(cuò)誤        C.推理形式錯(cuò)誤      D.非以上錯(cuò)誤

 

查看答案和解析>>

一、選擇題(本大題共12小題,每小題4分,共48分)

1.B    2.A    3.B    4.A     5.D     6.C

7.C    8.A    9.B    10.D    11.D   12.B   

二、填空題(本大題共4小題,每小題4分,共16分)

13.   14.增函數(shù)的定義     15.與該平面平行的兩個(gè)平面    16.

三、解答題(本大題共3小題,每小題12分,共36分)

17.(本小題滿分12分)

解:(Ⅰ)由,可得

由題設(shè)可得     即

解得,

所以.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)由題意得,

所以

,得,

 

 

所以函數(shù)的單調(diào)遞增區(qū)間為,.┄┄┄┄┄┄┄┄┄┄12分

18A. (本小題滿分12分)

解:(Ⅰ),

,

.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)根據(jù)計(jì)算結(jié)果,可以歸納出 .

當(dāng)時(shí),,與已知相符,歸納出的公式成立.

假設(shè)當(dāng))時(shí),公式成立,即

那么,

所以,當(dāng)時(shí)公式也成立.

綜上,對(duì)于任何都成立. ┄┄┄┄┄┄┄┄┄┄┄┄12分

18B. (本小題滿分12分)

解:(Ⅰ),因?yàn)?sub>,

所以,

,解得,

同理.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)根據(jù)計(jì)算結(jié)果,可以歸納出 .

當(dāng)時(shí),,與已知相符,歸納出的公式成立.

假設(shè)當(dāng))時(shí),公式成立,即.

可得,.

.

所以.

即當(dāng)時(shí)公式也成立.

綜上,對(duì)于任何都成立. ┄┄┄┄┄┄┄┄┄┄┄12分

19A. (本小題滿分12分)

(Ⅰ)解:的定義域?yàn)?sub>,

的導(dǎo)數(shù).

,解得;令,解得.

從而單調(diào)遞減,在單調(diào)遞增.

所以,當(dāng)時(shí),取得最小值. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 6分

(Ⅱ)依題意,得上恒成立,

即不等式對(duì)于恒成立.

,

.

當(dāng)時(shí),因?yàn)?sub>,

上的增函數(shù),   所以 的最小值是,

從而的取值范圍是. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

19B. (本小題滿分12分)

解:(Ⅰ)由于

當(dāng)時(shí),,

,可得.

當(dāng)時(shí),,

可知

所以函數(shù)的單調(diào)減區(qū)間為. ………………………………………………6分

(Ⅱ)設(shè)

當(dāng)時(shí),,

,可得,即;

,可得.

可得為函數(shù)的單調(diào)增區(qū)間,為函數(shù)的單調(diào)減區(qū)間.

當(dāng)時(shí),,

所以當(dāng)時(shí),

可得為函數(shù)的單調(diào)減區(qū)間.

所以函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

函數(shù)的最大值為,

    要使不等式對(duì)一切恒成立,

對(duì)一切恒成立,

,

可得的取值范圍為. ………………………………………………12分

 


同步練習(xí)冊(cè)答案