已知二次函數(shù)在處取得極值.且在點(diǎn)處的切線與直線平行. 查看更多

 

題目列表(包括答案和解析)

已知二次函數(shù)處取得極值,且在點(diǎn)處的切線與直線平行. 

(1)求的解析式;      (2)求函數(shù)的單調(diào)遞增區(qū)間及極值;

(3)求函數(shù)的最值.

 

查看答案和解析>>

已知二次函數(shù)處取得極值,且在點(diǎn)處的切線與直線平行。 

(1)求的解析式; 

(2)求函數(shù)的單調(diào)遞增區(qū)間及極值;

(3)求函數(shù)的最值。

 

查看答案和解析>>

已知二次函數(shù)處取得極值,且在點(diǎn)處的切線與直線平行. 
(1)求的解析式;      (2)求函數(shù)的單調(diào)遞增區(qū)間及極值;
(3)求函數(shù)的最值.

查看答案和解析>>

已知二次函數(shù)處取得極值,且在點(diǎn)處的切線與直線平行.  
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間及極值。
(3)求函數(shù)的最值。

查看答案和解析>>

已知二次函數(shù)處取得極值,且在點(diǎn)處的切線與直線平行。 
(1)求的解析式; 
(2)求函數(shù)的單調(diào)遞增區(qū)間及極值;
(3)求函數(shù)的最值。

查看答案和解析>>

一、選擇題(本大題共12小題,每小題4分,共48分)

1.B    2.A    3.B    4.A     5.D     6.C

7.C    8.A    9.B    10.D    11.D   12.B   

二、填空題(本大題共4小題,每小題4分,共16分)

13.   14.增函數(shù)的定義     15.與該平面平行的兩個(gè)平面    16.

三、解答題(本大題共3小題,每小題12分,共36分)

17.(本小題滿分12分)

解:(Ⅰ)由,可得

由題設(shè)可得     即

解得,

所以.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)由題意得,

所以

,得,

 

 

所以函數(shù)的單調(diào)遞增區(qū)間為.┄┄┄┄┄┄┄┄┄┄12分

18A. (本小題滿分12分)

解:(Ⅰ),

.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)根據(jù)計(jì)算結(jié)果,可以歸納出 .

當(dāng)時(shí),,與已知相符,歸納出的公式成立.

假設(shè)當(dāng))時(shí),公式成立,即,

那么,

所以,當(dāng)時(shí)公式也成立.

綜上,對于任何都成立. ┄┄┄┄┄┄┄┄┄┄┄┄12分

18B. (本小題滿分12分)

解:(Ⅰ),因?yàn)?sub>,

所以

,解得

同理.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)根據(jù)計(jì)算結(jié)果,可以歸納出 .

當(dāng)時(shí),,與已知相符,歸納出的公式成立.

假設(shè)當(dāng))時(shí),公式成立,即.

可得,.

.

所以.

即當(dāng)時(shí)公式也成立.

綜上,對于任何都成立. ┄┄┄┄┄┄┄┄┄┄┄12分

19A. (本小題滿分12分)

(Ⅰ)解:的定義域?yàn)?sub>,

的導(dǎo)數(shù).

,解得;令,解得.

從而單調(diào)遞減,在單調(diào)遞增.

所以,當(dāng)時(shí),取得最小值. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 6分

(Ⅱ)依題意,得上恒成立,

即不等式對于恒成立.

,

.

當(dāng)時(shí),因?yàn)?sub>

上的增函數(shù),   所以 的最小值是,

從而的取值范圍是. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

19B. (本小題滿分12分)

解:(Ⅰ)由于

當(dāng)時(shí),,

,可得.

當(dāng)時(shí),,

可知

所以函數(shù)的單調(diào)減區(qū)間為. ………………………………………………6分

(Ⅱ)設(shè)

當(dāng)時(shí),,

,可得,即;

,可得.

可得為函數(shù)的單調(diào)增區(qū)間,為函數(shù)的單調(diào)減區(qū)間.

當(dāng)時(shí),,

所以當(dāng)時(shí),

可得為函數(shù)的單調(diào)減區(qū)間.

所以函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

函數(shù)的最大值為

    要使不等式對一切恒成立,

對一切恒成立,

,

可得的取值范圍為. ………………………………………………12分

 


同步練習(xí)冊答案