要使在單調(diào).只需恒成立 -----8分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù).(

(1)若在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調(diào)遞增,

在區(qū)間上恒成立.  …………3分

,而當時,,故. …………5分

所以.                 …………6分

(2)令,定義域為

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點,

,即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

,即時,同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足,

由此求得的范圍是.        …………13分

綜合①②可知,當時,函數(shù)的圖象恒在直線下方.

 

查看答案和解析>>

一艘輪船在航行過程中的燃料費與它的速度的立方成正比例關(guān)系,其他與速度無關(guān)的費用每小時96元,已知在速度為每小時10公里時,每小時的燃料費是6元,要使行駛1公里所需的費用總和最小,這艘輪船的速度應確定為每小時多少公里?

查看答案和解析>>

已知函數(shù)f(x)=a-
22x+1
,(a∈R).
(1)若f(x)是奇函數(shù),求a的值;
(2)判斷f(x)在定義域上的單調(diào)性,并證明;
(3)要使f(x)≧0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

已知函數(shù)

(1)要使在區(qū)間(0,1)上單調(diào)遞增,試求a的取值范圍;

(2)若時,圖象上任意一點處的切線的傾斜角為,試求當時,a的取值范圍.

 

查看答案和解析>>

一艘輪船在航行過程中的燃料費與它的速度的立方成正比例關(guān)系,其他與速度無關(guān)的費用每小時96元,已知在速度為每小時10公里時,每小時的燃料費是6元,要使行駛1公里所需的費用總和最小,這艘輪船的速度應確定為每小時多少公里?

查看答案和解析>>


同步練習冊答案