綜上所述.當, 查看更多

 

題目列表(包括答案和解析)

某地開發(fā)了一個旅游景點,第1年的游客約為100萬人,第2年的游客約為120萬人.某數(shù)學興趣小組綜合各種因素預測:①該景點每年的游客人數(shù)會逐年增加;②該景點每年的游客都達不到130萬人.該興趣小組想找一個函數(shù)y=f(x)來擬合該景點對外開放的第x(x≥1)年與當年的游客人數(shù)y(單位:萬人)之間的關系.
(1)根據上述兩點預測,請用數(shù)學語言描述函數(shù)y=f(x)所具有的性質;
(2)若f(x)=
mx
+n,試確定m,n的值,并考察該函數(shù)是否符合上述兩點預測;
(3)若f(x)=a•bx+c(b>0,b≠1),欲使得該函數(shù)符合上述兩點預測,試確定b的取值范圍.

查看答案和解析>>

某地開發(fā)了一個旅游景點,第1年的游客約為100萬人,第2年的游客約為120萬人.某數(shù)學興趣小組綜合各種因素預測:①該景點每年的游客人數(shù)會逐年增加;②該景點每年的游客都達不到130萬人.該興趣小組想找一個函數(shù)來擬合該景點對外開放的第年與當年的游客人數(shù)(單位:萬人)之間的關系.
(1)根據上述兩點預測,請用數(shù)學語言描述函數(shù)所具有的性質;
(2)若=,試確定的值,并考察該函數(shù)是否符合上述兩點預測;
(3)若=,欲使得該函數(shù)符合上述兩點預測,試確定的取值范圍.

查看答案和解析>>

某地開發(fā)了一個旅游景點,第1年的游客約為100萬人,第2年的游客約為120萬人.某數(shù)學興趣小組綜合各種因素預測:①該景點每年的游客人數(shù)會逐年增加;②該景點每年的游客都達不到130萬人.該興趣小組想找一個函數(shù)來擬合該景點對外開放的第年與當年的游客人數(shù)(單位:萬人)之間的關系.
(1)根據上述兩點預測,請用數(shù)學語言描述函數(shù)所具有的性質;
(2)若=,試確定的值,并考察該函數(shù)是否符合上述兩點預測;
(3)若=,欲使得該函數(shù)符合上述兩點預測,試確定的取值范圍.

查看答案和解析>>

已知函數(shù)

 (1) 若函數(shù)上單調,求的值;

(2)若函數(shù)在區(qū)間上的最大值是,求的取值范圍.

【解析】第一問,

, 、

第二問中,

由(1)知: 當時, 上單調遞增  滿足條件當時,

解: (1) ……3分

, …………….7分

(2)

由(1)知: 當時, 上單調遞增

  滿足條件…………..10分

時,  

…………13分

綜上所述:

 

查看答案和解析>>

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

單調遞減;當單調遞增,故當時,取最小值

于是對一切恒成立,當且僅當.       、

時,單調遞增;當時,單調遞減.

故當時,取最大值.因此,當且僅當時,①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當時,單調遞減;當時,單調遞增.故當,

從而,

所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點評】本題考查利用導函數(shù)研究函數(shù)單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數(shù),研究這個函數(shù)的性質進行分析判斷.

 

查看答案和解析>>


同步練習冊答案