題目列表(包括答案和解析)
設函數(shù),其中為自然對數(shù)的底數(shù).
(1)求函數(shù)的單調區(qū)間;
(2)記曲線在點(其中)處的切線為,與軸、軸所圍成的三角形面積為,求的最大值.
【解析】第一問利用由已知,所以,
由,得, 所以,在區(qū)間上,,函數(shù)在區(qū)間上單調遞減; 在區(qū)間上,,函數(shù)在區(qū)間上單調遞增;
第二問中,因為,所以曲線在點處切線為:.
切線與軸的交點為,與軸的交點為,
因為,所以,
, 在區(qū)間上,函數(shù)單調遞增,在區(qū)間上,函數(shù)單調遞減.所以,當時,有最大值,此時,
解:(Ⅰ)由已知,所以, 由,得, 所以,在區(qū)間上,,函數(shù)在區(qū)間上單調遞減;
在區(qū)間上,,函數(shù)在區(qū)間上單調遞增;
即函數(shù)的單調遞減區(qū)間為,單調遞增區(qū)間為.
(Ⅱ)因為,所以曲線在點處切線為:.
切線與軸的交點為,與軸的交點為,
因為,所以,
, 在區(qū)間上,函數(shù)單調遞增,在區(qū)間上,函數(shù)單調遞減.所以,當時,有最大值,此時,
所以,的最大值為
已知函數(shù),(),
(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值
(2)當時,若函數(shù)的單調區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。
【解析】(1),
∵曲線與曲線在它們的交點(1,c)處具有公共切線
∴,
∴
(2)令,當時,
令,得
時,的情況如下:
x |
|||||
+ |
0 |
- |
0 |
+ |
|
|
|
所以函數(shù)的單調遞增區(qū)間為,,單調遞減區(qū)間為
當,即時,函數(shù)在區(qū)間上單調遞增,在區(qū)間上的最大值為,
當且,即時,函數(shù)在區(qū)間內單調遞增,在區(qū)間上單調遞減,在區(qū)間上的最大值為
當,即a>6時,函數(shù)在區(qū)間內單調遞贈,在區(qū)間內單調遞減,在區(qū)間上單調遞增。又因為
所以在區(qū)間上的最大值為。
設函數(shù).
(Ⅰ) 當時,求的單調區(qū)間;
(Ⅱ) 若在上的最大值為,求的值.
【解析】第一問中利用函數(shù)的定義域為(0,2),.
當a=1時,所以的單調遞增區(qū)間為(0,),單調遞減區(qū)間為(,2);
第二問中,利用當時, >0, 即在上單調遞增,故在上的最大值為f(1)=a 因此a=1/2.
解:函數(shù)的定義域為(0,2),.
(1)當時,所以的單調遞增區(qū)間為(0,),單調遞減區(qū)間為(,2);
(2)當時, >0, 即在上單調遞增,故在上的最大值為f(1)=a 因此a=1/2.
已知函數(shù),.
(Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;
(Ⅱ)若存在實數(shù),使對任意的,不等式 恒成立.求正整數(shù)的最大值.
【解析】第一問中利用導數(shù)在在處取到極值點可知導數(shù)為零可以解得方程有三個不同的實數(shù)根來分析求解。
第二問中,利用存在實數(shù),使對任意的,不等式 恒成立轉化為,恒成立,分離參數(shù)法求解得到范圍。
解:(1)
①
(2)不等式 ,即,即.
轉化為存在實數(shù),使對任意的,不等式恒成立.
即不等式在上恒成立.
即不等式在上恒成立.
設,則.
設,則,因為,有.
故在區(qū)間上是減函數(shù)。又
故存在,使得.
當時,有,當時,有.
從而在區(qū)間上遞增,在區(qū)間上遞減.
又[來源:]
所以當時,恒有;當時,恒有;
故使命題成立的正整數(shù)m的最大值為5
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com