16.如圖.點在軸上.交軸于兩點.連結(jié)并延長交于.過點的直線交軸于.且的半徑為..若函數(shù)的圖象過C點.則k= . 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接BP并延長交⊙P于C,過點C的直線y=2x+b交x軸于D,且⊙P的半徑為
5
,AB=4.若函數(shù)y=
k
x
(x<0)的圖象過C點,則k的值是( 。
A、±4
B、-4
C、-2
5
D、4

查看答案和解析>>

如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接AP并延長交⊙P于C點,過點精英家教網(wǎng)C的直線y=-2x+b交x軸于點D,交y軸于點E,且⊙P的半徑為
5
,AB=4.
(1)求點P,點C的坐標;
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-
1
2
x2+mx+n的圖象經(jīng)過A,C兩點,求這個二次函數(shù)的解析式,并寫出使函數(shù)值大于一次函數(shù)y=-2x+b值的x的取值范圍.

查看答案和解析>>

如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接BP并延長交⊙P于C,過點C精英家教網(wǎng)的直線y=2x+b交x軸于D,且⊙P的半徑為
5
,AB=4.
(1)求點B,P,C的坐標;
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-x2+(a+1)x+6的圖象經(jīng)過點B,求這個二次函數(shù)的解析式,并寫出使二次函數(shù)值小于一次函數(shù)y=2x+b值的x的取值范圍.

查看答案和解析>>

精英家教網(wǎng)如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接BP并延長交⊙P于C,過點C的直線y=2x+b交x軸于D,且⊙P的半徑為
5
,AB=4.若函數(shù)y=
k
x
(x<0)的圖象過C點,則k=
 

查看答案和解析>>

如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接AP并延長交⊙P于C點,過點C的直線y=-2x+b交x軸于點D,交y軸于點E,且⊙P的半徑為數(shù)學(xué)公式,AB=4.
(1)求點P,點C的坐標;
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-數(shù)學(xué)公式x2+mx+n的圖象經(jīng)過A,C兩點,求這個二次函數(shù)的解析式,并寫出使函數(shù)值大于一次函數(shù)y=-2x+b值的x的取值范圍.

查看答案和解析>>

1-6:CCABAD  7――12:BBDACC

13.7   14.   15.   16.-4    17.

18.x-2

19. 證明:如圖,因為 AB∥CN

所以   在中  

                  

 ≌       

      是平行四邊形    

20.(1)  (2)500

21.(1)(-1,4),;(2);

(3)直線軸的交點B(4,0),與軸交于點C(0,8),

繞P(-1,0)順時針旋轉(zhuǎn)90°后的對應(yīng)點(-1, -5),(7,-1),

設(shè)直線的函數(shù)解析式為

 

22.略(2)

23.的整數(shù)

(2)   得,當x=24時,利潤最大是3880

24.解:(1)BE=AD

證明:∵△ABC與△DCE是等邊三角形

∴∠ACB=∠DCE=60° CA=CB,CE=CD

∴∠BCE=∠ACD  ∴△BCE≌△ACD    

∴ BE=AD(也可用旋轉(zhuǎn)方法證明BE=AD)

(2)設(shè)經(jīng)過x秒重疊部分的面積是,如圖在△CQT中

∵∠TCQ=30° ∠RQP=60°

∴∠QTC=30° ∴∠QTC=∠TCQ  ∴QT=QC=x∴ RT=3-x

∵∠RTS+∠R=90°    ∴∠RST=90°

由已知得×32(3-x)2=

x=1,x=5,因為0≤x≤3,所以x=1

答:經(jīng)過1秒重疊部分的面積是

(3)C′N?E′M的值不變

證明:∵∠ACB=60°∴∠MCE′+∠NCC′=120°

∵∠CNC′+∠NCC′=120° ∴∠MCE′=∠CNC′

∵∠E′=∠C′   ∴△E′MC∽△C′CN

  ∴C′N?E′M=C′C?E′C=×=

 

 

25.(1)

(2)聯(lián)立得A(-2,-1)C(1,2)

設(shè)P(a,0),則Q(4+a,2)

∴Q(-3,2)或(1,2)

(3)∵△AND~△RON,∴

∵△ONS~△DNO,∴

 

 


同步練習(xí)冊答案