題目列表(包括答案和解析)
(Ⅰ)已知函數(shù),若存在,使得,則稱是函數(shù)的一個(gè)不動(dòng)點(diǎn),設(shè)二次函數(shù).
(Ⅰ) 當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);
(Ⅱ) 若對(duì)于任意實(shí)數(shù),函數(shù)恒有兩個(gè)不同的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅲ) 在(Ⅱ)的條件下,若函數(shù)的圖象上兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且直線是線段的垂直平分線,求實(shí)數(shù)的取值范圍.
(Ⅰ)已知函數(shù),若存在,使得,則稱是函數(shù)的一個(gè)不動(dòng)點(diǎn),設(shè)二次函數(shù).
(Ⅰ) 當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);
(Ⅱ) 若對(duì)于任意實(shí)數(shù),函數(shù)恒有兩個(gè)不同的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅲ) 在(Ⅱ)的條件下,若函數(shù)的圖象上兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且直線是線段的垂直平分線,求實(shí)數(shù)的取值范圍.
已知函數(shù)的圖象與函數(shù)的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.
(I)求的值;
(II)若,且在區(qū)間上為減函數(shù),求實(shí)數(shù)的取值范圍;
(III)在條件(II)下,試證明函數(shù)與函數(shù)圖象的交點(diǎn)不可能落在軸的左側(cè).
已知函數(shù)的圖象為曲線C。
(1)若曲線C上存在點(diǎn)P,使曲線C在P點(diǎn)處的切線與軸平行,求的關(guān)系;
(2)若函數(shù)時(shí)取得極值,求此時(shí)的值;
(3)在滿足(2)的條件下,的取值范圍。
一、選擇題:(每小題5分,共60分)
A C C D D A A B B C C D
注:選擇題第⑺題選自課本43頁第6題.
二、填空題:(每小題4分,共16分)
(13) ; (14) ; (15) ; (16) 6.
三、解答題:(本大題共6小題,共74分)
(17) 解:(Ⅰ)由對(duì)數(shù)函數(shù)的定義域知. ………………2分
解這個(gè)分式不等式,得. ………………4分
故函數(shù)的定義域?yàn)?sub>. ………………5分
(Ⅱ), ………………8分
因?yàn)?sub>,所以由對(duì)數(shù)函數(shù)的單調(diào)性知. ………………9分
又由(Ⅰ)知,解這個(gè)分式不等式,得. ………………11分
故對(duì)于,當(dāng), ………………12分
(18) 解:(Ⅰ)由題意,=1又a>0,所以a=1.………………4分
(Ⅱ)-=, ………………6分
當(dāng)時(shí),-=,無遞增區(qū)間; ………………8分
當(dāng)x<1時(shí),-=,它的遞增區(qū)間是.……11分
綜上知:-的單調(diào)遞增區(qū)間是. ……………12分
(19)證明:(Ⅰ) 函數(shù)在上的單調(diào)增區(qū)間為.
(證明方法可用定義法或?qū)?shù)法) ……………8分
(Ⅱ) ,所以,解得. ……………12分
(20) 解:(Ⅰ)設(shè)投資為萬元,產(chǎn)品的利潤為萬元,產(chǎn)品的利潤為萬元.由題意設(shè),.
由圖可知,. ………………2分
又,. ………………4分
從而,. ………………5分(Ⅱ)設(shè)產(chǎn)品投入萬元,則產(chǎn)品投入萬元,設(shè)企業(yè)利潤為萬元.
, ………………7分
令,則.
當(dāng)時(shí),,此時(shí). ………………11分
答:當(dāng)產(chǎn)品投入6萬元,則產(chǎn)品投入4萬元時(shí),該企業(yè)獲得最大利潤,利潤為2.8萬元. ………………12分
(21)解:(Ⅰ) ……1分
根據(jù)題意, …………4分
解得. …………6分
(Ⅱ)因?yàn)?sub> …………7分
(i)時(shí),函數(shù)無最大值,
不合題意,舍去. …………9分
(ii)時(shí),根據(jù)題意得
解之得 …………11分
為正整數(shù), =3或4. …………12分
(22) 解:,
(Ⅰ)當(dāng)時(shí), ………………2分
設(shè)為其不動(dòng)點(diǎn),即則
即的不動(dòng)點(diǎn)是. ……………4分
(Ⅱ)由得:. 由已知,此方程有相異二實(shí)根,
恒成立,即即對(duì)任意恒成立.
………………8分(Ⅲ)設(shè),
直線是線段AB的垂直平分線, ∴ …………10分
記AB的中點(diǎn)由(Ⅱ)知
……………………12分
化簡(jiǎn)得:
(當(dāng)時(shí),等號(hào)成立).
即 ……………………14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com