6.方程滿(mǎn)足且0<,則實(shí)數(shù)a的取值范圍是( ) 查看更多

 

題目列表(包括答案和解析)

(實(shí))方程(a2+1)x2-2ax-3=0的兩根x1,x2滿(mǎn)足|x2|<x1(1-x2)且x1>0,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

方程(a2+1)x2-2ax-3=0的兩根為x1,x2,滿(mǎn)足|x2|<x1(1-x2),且x1>0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

方程(a2+1)x2-2ax-3=0的兩根為x1,x2,滿(mǎn)足|x2|<x1(1-x2),且x1>0,則實(shí)數(shù)a的取值范圍是   

查看答案和解析>>

若關(guān)于x的方程|x|=ax+1僅有一個(gè)根x0,且滿(mǎn)足x0<0,則實(shí)數(shù)a的取值范圍是(    )。

查看答案和解析>>

(實(shí))方程(a2+1)x2-2ax-3=0的兩根x1,x2滿(mǎn)足|x2|<x1(1-x2)且x1>0,則實(shí)數(shù)a的取值范圍是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

1.B  2.D  3.A  4.B  5.C  6.D  7.A  8.B  9.C  10.C

11.2   12.   13.0  14.  15.96

16.解:(1)依題意:,即,又,

∴  ,∴ 

(2)由三角形是銳角三角形可得,即。

     由正弦定理得∴  ,

∴  ,

  ∵   ,∴  ,

∴      即。

17.設(shè),則=,,

,又,

.

(2)=,

18解:(1)記數(shù)列的前項(xiàng)和為,則依題有

,故

故數(shù)列的通項(xiàng)為.故,易知,

(2)假設(shè)存在實(shí)數(shù),使得當(dāng)時(shí),對(duì)任意恒成立,則對(duì)任意都成立,,

,有.故存在最大的實(shí)數(shù)符合題意.

19. 20. 解:設(shè)該學(xué)生選修甲、乙、丙的概率分別為x、y、z

       依題意得                      

       (1)若函數(shù)R上的偶函數(shù),則=0       

       當(dāng)=0時(shí),表示該學(xué)生選修三門(mén)功課或三門(mén)功課都沒(méi)選.

      

       =0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24

       ∴事件A的概率為0.24                                                      

   (2)依題意知的的取值為0和2由(1)所求可知

P(=0)=0.24 P(=2)=1- P(=0)=0.76

的分布列為

0

2

P

0.24

0.76

的數(shù)學(xué)期望為E=0×0.24+2×0.76=1.52                       

20. (1)由題意可知,又,解得

橢圓的方程為;

(2)由(1)得,所以.假設(shè)存在滿(mǎn)足題意的直線,設(shè)的方程為

,代入,得,

設(shè),則   ①,

,

的方向向量為,

; 當(dāng)時(shí),,即存在這樣的直線;

當(dāng)時(shí),不存在,即不存在這樣的直線 .

21.(1) 必要性 : ,又  ,即

充分性 :設(shè) ,對(duì)用數(shù)學(xué)歸納法證明

        當(dāng)時(shí),.假設(shè)

        則,且

,由數(shù)學(xué)歸納法知對(duì)所有成立

     (2) 設(shè) ,當(dāng)時(shí),,結(jié)論成立

         當(dāng) 時(shí),

          ,由(1)知,所以  且   

         

         

         

(3) 設(shè) ,當(dāng)時(shí),,結(jié)論成立

 當(dāng)時(shí),由(2)知

  w.w.w.k.s.5.u.c.o.m    


同步練習(xí)冊(cè)答案