那么把()叫閉函數(shù) 查看更多

 

題目列表(包括答案和解析)

對于定義域?yàn)镈的函數(shù),若同時(shí)滿足下列條件:①在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間[],使在[]上的值域?yàn)閇];那么把)叫閉函數(shù)。

(1)求閉函數(shù)符合條件②的區(qū)間[];

(2)判斷函數(shù)是否為閉函數(shù)?并說明理由;

(3)判斷函數(shù)是否為閉函數(shù)?若是閉函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

對于定義域?yàn)?img width=18 height=18 src="http://thumb.zyjl.cn/pic1/1899/sx/109/87309.gif">的函數(shù),若同時(shí)滿足:①內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間,使上的值域?yàn)?img width=38 height=22 src="http://thumb.zyjl.cn/pic1/1899/sx/116/87316.gif">;那么把函數(shù))叫做閉函數(shù).

(1) 求閉函數(shù)符合條件②的區(qū)間

(2) 若是閉函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

對于定義域?yàn)镈的函數(shù),若同時(shí)滿足下列條件:

在D內(nèi)單調(diào)遞增或單調(diào)遞減;

②存在區(qū)間[],使在[]上的值域?yàn)閇];那么把)叫閉函數(shù)。

(1)求閉函數(shù)符合條件②的區(qū)間[];

(2)判斷函數(shù)是否為閉函數(shù)?并說明理由;

(3)若是閉函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

對于定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/53/c/sicjf1.png" style="vertical-align:middle;" />的函數(shù),若同時(shí)滿足:
內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間[],使上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/fd/1/1ufk04.png" style="vertical-align:middle;" />;
那么把函數(shù))叫做閉函數(shù).
(1) 求閉函數(shù)符合條件②的區(qū)間;
(2) 若是閉函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

對于定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055240964315.png" style="vertical-align:middle;" />的函數(shù),若同時(shí)滿足:
內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間[],使上的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055241104434.png" style="vertical-align:middle;" />;
那么把函數(shù))叫做閉函數(shù).
(1) 求閉函數(shù)符合條件②的區(qū)間;
(2) 若是閉函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

1、C  2、A  3、C  4、A  5、C  6、B  7、B  8、D  9、A  10、C  11、B  12、D

13、1.56   14、5   15、

 16、(1)斜面的中面面積等于斜面面積的四分之一;(2)三個(gè)直角面面積的平方和等于斜面面積的平方;(3)斜面與三個(gè)直角面所成二面角的余弦平方和等于1,等等

17、解: (Ⅰ)   =
  =   =   =

  (Ⅱ) ∵   ∴ ,
  又∵   ∴   當(dāng)且僅當(dāng) b=c=時(shí),bc=,故bc的最大值是.

18、

19、(1)證明:底面           

          

平面平面

(2)解:因?yàn)?sub>,且,

      可求得點(diǎn)到平面的距離為

(3)解:作,連,則為二面角的平面角

      設(shè),在中,求得,

同理,,由余弦定理

解得, 即=1時(shí),二面角的大小為

20、

21、解:設(shè)

由題意可得:

                                 

相減得:

                                 

∴直線的方程為,即

(2)設(shè),代入圓的方程整理得:

是上述方程的兩根

             

同理可得:     

.                             

22、解:(1)由題意,在[]上遞減,則解得  

所以,所求的區(qū)間為[-1,1]        

(2)取,即不是上的減函數(shù)

,

不是上的增函數(shù)

所以,函數(shù)在定義域內(nèi)不單調(diào)遞增或單調(diào)遞減,從而該函數(shù)不是閉函數(shù)

(3)若是閉函數(shù),則存在區(qū)間[],在區(qū)間[]上,函數(shù)的值域?yàn)閇],即為方程的兩個(gè)實(shí)數(shù)根,

即方程有兩個(gè)不等的實(shí)根

當(dāng)時(shí),有,解得

當(dāng)時(shí),有,無解

綜上所述,

 

 

 


同步練習(xí)冊答案