題目列表(包括答案和解析)
已知點(diǎn)P(-3,0),點(diǎn)A在y軸上,點(diǎn)Q在x軸非負(fù)半軸上,點(diǎn)M在直線AQ上,滿足·=0,=-.
(1)當(dāng)點(diǎn)A在y軸上移動時,求動點(diǎn)M的軌跡C的方程;
(2)設(shè)軌跡C的準(zhǔn)線為l,焦點(diǎn)為F,過F作直線m交軌跡C于G,H兩點(diǎn),過點(diǎn)G作平行于軌跡C的對稱軸的直線n,且n∩l=E,試問點(diǎn)E,O,H(O為坐標(biāo)原點(diǎn))是否在同一條直線上?并說明理由.
x2 |
a2 |
y2 |
b2 |
1 |
4 |
1 |
2 |
1.C 2.B 3.B 4.D 5.C 6.A 7.B 8.B 9.D 10.C
11. 12.1 13. 14.4 15.
16.當(dāng)a>1時,有,∴,∴,∴,∴當(dāng)0<a<1時,有,∴.
綜上,當(dāng)a>1時,;當(dāng)0<a<1時,
17.(Ⅰ)有0枚正面朝上的概率為,有1枚正面朝上的概率為:
∴
(Ⅱ)出現(xiàn)奇數(shù)枚正面朝上的概率為:
∴出現(xiàn)偶數(shù)枚正面朝上的概率為,∴概率相等.
18.(Ⅰ)在梯形ABCD中,∵,
∴四邊形ABCD是等腰梯形,
且
∴,∴
又∵平面平面ABCD,交線為AC,∴平面ACFE.
(Ⅱ)當(dāng)時,平面BDF. 在梯形ABCD中,設(shè),連結(jié)FN,則
∵而,∴∴MFAN,
∴四邊形ANFM是平行四邊形. ∴
又∵平面BDF,平面BDF. ∴平面BDF.
19.(Ⅰ)設(shè)橢圓方程為,則有,∴a=6, b=3.
∴橢圓C的方程為
(Ⅱ),設(shè)點(diǎn),則
∴,
∵,∴,∴∴的最小值為6.
20.(Ⅰ)設(shè),,
∴在單調(diào)遞增.
(Ⅱ)當(dāng)時,,又,,即;
當(dāng)時,,,由,得或.
的值域為
(Ⅲ)當(dāng)x=0時,,∴x=0為方程的解.
當(dāng)x>0時,,∴,∴
當(dāng)x<0時,,∴,∴
即看函數(shù)
與函數(shù)圖象有兩個交點(diǎn)時k的取值范圍,應(yīng)用導(dǎo)數(shù)畫出的大致圖象,∴,∴
21.(Ⅰ)令n=1有,,∴,∴.
(Ⅱ)∵……① ∴當(dāng)時,有……②
①-②有,
∴
將以上各式左右兩端分別相乘,得,∴
當(dāng)n=1,2時也成立,∴.
(Ⅲ),當(dāng)時,
,
∵
∴
當(dāng)時,
當(dāng)時,
當(dāng)時,
∴
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com