A.1 B.0 C. D.答案:A 查看更多

 

題目列表(包括答案和解析)

已知sin2θ=a,cos2θ=b,0<θ<
π
4
,給出tan(θ+
π
4
)
值的五個答案:①
b
1-a
;②
a
1-b
;③
1+b
a
;④
1+a
b
;  ⑤
a-b+1
a+b-1
.其中正確的是( 。

查看答案和解析>>

已知sin2θ=a,cos2θ=b,0<θ<
π
4
,給出tan(θ+
π
4
)
值的五個答案:①
b
1-a
;②
a
1-b
;③
1+b
a
;④
1+a
b
;  ⑤
a-b+1
a+b-1
.其中正確的是( 。
A.①②⑤B.②③④C.①④⑤D.③④⑤

查看答案和解析>>

若數(shù)列{an},{bn}中,a1=a,b1=b,
an=-2an-1+4bn-1
bn=-5an-1+7bn-1
,(n∈N,n≥2).請按照要求完成下列各題,并將答案填在答題紙的指定位置上.
(1)可考慮利用算法來求am,bm的值,其中m為給定的數(shù)據(jù)(m≥2,m∈N).右圖算法中,虛線框中所缺的流程,可以為下面A、B、C、D中的
ACD
ACD

(請?zhí)畛鋈看鸢福?BR>A、B、
C、D、

(2)我們可證明當(dāng)a≠b,5a≠4b時,{an-bn}及{5an-4bn}均為等比數(shù)列,請按答紙題要求,完成一個問題證明,并填空.
證明:{an-bn}是等比數(shù)列,過程如下:an-bn=(-2an-1+4bn-1)+(5an-1-7bn-1)=3an-1-3bn-1=3(an-1-bn-1
所以{an-bn}是以a1-b1=a-b≠0為首項,以
3
3
為公比的等比數(shù)列;
同理{5an-4bn}是以5a1-4b1=5a-4b≠0為首項,以
2
2
為公比的等比數(shù)列
(3)若將an,bn寫成列向量形式,則存在矩陣A,使
an
bn
=A
an-1
bn-1
=A(A
an-2
bn-2
)=A2
an-2
bn-2
=…=An-1
a1
b1
,請回答下面問題:
①寫出矩陣A=
-24
-57
-24
-57
;  ②若矩陣Bn=A+A2+A3+…+An,矩陣Cn=PBnQ,其中矩陣Cn只有一個元素,且該元素為Bn中所有元素的和,請寫出滿足要求的一組P,Q:
P=
1 
1 
,Q=
1
1
P=
1 
1 
,Q=
1
1
; ③矩陣Cn中的唯一元素是
2n+2-4
2n+2-4

計算過程如下:

查看答案和解析>>

設(shè)S n是公差為d(d≠0)的無窮等差數(shù)列{a n}的前n項和,則下列命題錯誤的是

A.若d<0,則數(shù)列{S n}有最大項

B.若數(shù)列{S n}有最大項,則d<0

C.若數(shù)列{S n}是遞增數(shù)列,則對任意的nN*,均有S n>0

D.若對任意的nN*,均有S n>0,則數(shù)列{S n}是遞增數(shù)列

【解析】選項C顯然是錯的,舉出反例:—1,0,1,2,3,….滿足數(shù)列{S n}是遞增數(shù)列,但是S n>0不成立.

【答案】C

查看答案和解析>>

現(xiàn)有問題:“對任意x>0,不等式x-a+>0恒成立,求實數(shù)a的取值范圍.”有兩位同學(xué)用數(shù)形結(jié)合的方法分別提出了自己的解題思路和答案:
學(xué)生甲:在一個坐標(biāo)系內(nèi)作出函數(shù)和g(x)=-x+a的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側(cè)的部分恒在g(x)的上方.可解得a的取值范圍是[0,+∞]
學(xué)生乙:在坐標(biāo)平面內(nèi)作出函數(shù)的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側(cè)的部分恒在直線y=2a的上方.可解得a的取值范圍是[0,1].
則以下對上述兩位同學(xué)的解題方法和結(jié)論的判斷都正確的是( )
A.甲同學(xué)方法正確,結(jié)論錯誤
B.乙同學(xué)方法正確,結(jié)論錯誤
C.甲同學(xué)方法正確,結(jié)論正確
D.乙同學(xué)方法錯誤,結(jié)論正確

查看答案和解析>>


同步練習(xí)冊答案